cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257712 Triangular numbers (A000217) that are the sum of eight consecutive triangular numbers.

This page as a plain text file.
%I A257712 #20 Feb 27 2022 11:37:27
%S A257712 120,276,1176,28920,126756,306936,1345620,33362196,146264856,
%T A257712 354192420,1552832856,38499933816,168789505620,408737734296,
%U A257712 1791967758756,44428890250020,194782943209176,471682991173716,2067929240760120,51270900848577816,224779347673872036
%N A257712 Triangular numbers (A000217) that are the sum of eight consecutive triangular numbers.
%H A257712 Colin Barker, <a href="/A257712/b257712.txt">Table of n, a(n) for n = 1..1000</a>
%H A257712 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1154,-1154,0,0,-1,1).
%F A257712 G.f.: -12*x*(3*x^8+7*x^6+13*x^5-3387*x^4+2312*x^3+75*x^2+13*x+10) / ((x-1)*(x^2-6*x+1)*(x^2+6*x+1)*(x^4+34*x^2+1)).
%e A257712 120 is in the sequence because T(15) = 120 = 1+3+6+10+15+21+28+36 = T(1)+ ... +T(8).
%t A257712 LinearRecurrence[{1, 0, 0, 1154, -1154, 0, 0, -1, 1}, {120, 276, 1176, 28920, 126756, 306936, 1345620, 33362196, 146264856}, 30] (* _Vincenzo Librandi_, Jun 27 2015 *)
%t A257712 Select[Total/@Partition[Accumulate[Range[5*10^6]],8,1],OddQ[ Sqrt[ 1+8#]]&] (* The program generates the first 16 terms of the sequence *) (* _Harvey P. Dale_, Feb 27 2022 *)
%o A257712 (PARI) Vec(-12*x*(3*x^8+7*x^6+13*x^5-3387*x^4+2312*x^3+75*x^2+13*x+10) / ((x-1)*(x^2-6*x+1)*(x^2+6*x+1)*(x^4+34*x^2+1)) + O(x^100))
%Y A257712 Cf. A000217, A001110, A129803, A131557, A257711, A257713, A259413, A259414, A259415.
%K A257712 nonn,easy
%O A257712 1,1
%A A257712 _Colin Barker_, May 05 2015