cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257714 Pentagonal numbers (A000326) that are the sum of five consecutive pentagonal numbers.

This page as a plain text file.
%I A257714 #12 Jun 26 2015 08:36:36
%S A257714 44290,487065,97731740,1074935965,476036316661270,5235848584389645,
%T A257714 1050611935177517000,11555515453364758825,5117369992623387417086890,
%U A257714 56285147779473003009380865,11294033255019751129047408500,124221295646279547914265231925
%N A257714 Pentagonal numbers (A000326) that are the sum of five consecutive pentagonal numbers.
%H A257714 Colin Barker, <a href="/A257714/b257714.txt">Table of n, a(n) for n = 1..398</a>
%H A257714 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,10749957122,-10749957122,0,0,-1,1).
%F A257714 G.f.: -5*x*(29*x^8 +275*x^7 +60401*x^6 +606965*x^5 -16071841615*x^4 +195440845*x^3 +19448935*x^2 +88555*x +8858) / ((x -1)*(x^2 -322*x +1)*(x^2 +322*x +1)*(x^4 +103682*x^2 +1)).
%e A257714 44290 is in the sequence because P(172) = 44290 = 8400+8626+8855+9087+9322 = P(75)+ ... +P(79).
%t A257714 CoefficientList[Series[5 (29 x^8 + 275 x^7 + 60401 x^6 + 606965 x^5 - 16071841615 x^4 + 195440845 x^3 + 19448935 x^2 + 88555 x + 8858)/((1 - x) (x^2 - 322 x + 1) (x^2 + 322 x + 1) (x^4 + 103682 x^2 + 1)), {x, 0, 33}], x] (* _Vincenzo Librandi_, May 06 2015 *)
%o A257714 (PARI) Vec(-5*x*(29*x^8 +275*x^7 +60401*x^6 +606965*x^5 -16071841615*x^4 +195440845*x^3 +19448935*x^2 +88555*x +8858) / ((x -1)*(x^2 -322*x +1)*(x^2 +322*x +1)*(x^4 +103682*x^2 +1)) + O(x^100))
%Y A257714 Cf. A000326, A133301, A257715, A259402, A259403, A259404.
%K A257714 nonn,easy
%O A257714 1,1
%A A257714 _Colin Barker_, May 05 2015