cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257715 Pentagonal numbers (A000326) that are the sum of six consecutive pentagonal numbers.

This page as a plain text file.
%I A257715 #13 Dec 14 2015 14:48:30
%S A257715 651,354051,196476315,1833809355,1017687528051,564774036750651,
%T A257715 313425981747606051,173938318056614696235,1623451323680702588835,
%U A257715 900947621231988101541051,499988268427580436128625651,277472588498948806845840543051,153985687725108202266731539138755
%N A257715 Pentagonal numbers (A000326) that are the sum of six consecutive pentagonal numbers.
%H A257715 Colin Barker, <a href="/A257715/b257715.txt">Table of n, a(n) for n = 1..417</a>
%H A257715 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,885289046402,-885289046402,0,0,0,-1,1).
%F A257715 G.f.: -3*x*(17*x^10 +6808*x^9 +56840*x^8 +35265352*x^7 +19570796200*x^6 -4188939995034*x^5 +338617906232*x^4 +545777680*x^3 +65374088*x^2 +117800*x +217) / ((x -1)*(x^10 -885289046402*x^5 +1)).
%e A257715 651 is in the sequence because P(21) = 651 = 51+70+92+117+145+176 = P(6)+ ... +P(11).
%t A257715 CoefficientList[Series[3 (17 x^10 + 6808 x^9 + 56840 x^8 + 35265352 x^7 + 19570796200 x^6 - 4188939995034 x^5 + 338617906232 x^4 + 545777680 x^3 + 65374088 x^2 + 117800 x + 217)/((1 - x) (x^10 - 885289046402 x^5 + 1)), {x, 0, 33}], x] (* _Vincenzo Librandi_, May 06 2015 *)
%t A257715 LinearRecurrence[{1,0,0,0,885289046402,-885289046402,0,0,0,-1,1},{651,354051,196476315,1833809355,1017687528051,564774036750651,313425981747606051,173938318056614696235,1623451323680702588835,900947621231988101541051,499988268427580436128625651},20] (* _Harvey P. Dale_, Dec 14 2015 *)
%o A257715 (PARI) Vec(-3*x*(17*x^10 +6808*x^9 +56840*x^8 +35265352*x^7 +19570796200*x^6 -4188939995034*x^5 +338617906232*x^4 +545777680*x^3 +65374088*x^2 +117800*x +217) / ((x -1)*(x^10 -885289046402*x^5 +1)) + O(x^100))
%Y A257715 Cf. A000326, A133301, A257714, A259402, A259403, A259404.
%K A257715 nonn,easy
%O A257715 1,1
%A A257715 _Colin Barker_, May 05 2015