This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257745 #9 Dec 16 2017 18:01:27 %S A257745 5,7,41,43,89,127,179,193,233,263,283,317,379,383,397,443,457,487,503, %T A257745 547,599,607,631,643,647,719,733,787,809,821,839,937,947,971,977,997, %U A257745 1019,1039,1049,1069,1091,1097,1103,1109,1187,1193,1217,1231 %N A257745 Prime numbers that have a hexagonal Voronoi cell in the Voronoi diagram of the Ulam prime spiral. %H A257745 Vardan Semerjyan, <a href="http://smallsats.org/2014/01/03/voronoi-diagram-of-prime-spiral/">Voronoi diagram of prime spiral</a> %o A257745 (MATLAB) %o A257745 sz = 201; % Size of the N x N square matrix %o A257745 mat = spiral(sz); % MATLAB Function %o A257745 k = 1; %o A257745 for i =1:sz %o A257745 for j=1:sz %o A257745 if isprime(mat(i,j)) % Check if the number is prime %o A257745 % saving indices of primes %o A257745 y(k) = i; x(k) = j; %o A257745 k = k+1; %o A257745 end %o A257745 end %o A257745 end %o A257745 xy = [x',y']; %o A257745 [v,c] = voronoin(xy); % Returns Voronoi vertices V and %o A257745 % the Voronoi cells C %o A257745 k = 1; %o A257745 for i = 1:length(c) %o A257745 szv = size(v(c{i},1)); %o A257745 polyN(i) = szv(1); %o A257745 if polyN(i) == 6 %o A257745 A(k) = mat(y(i),x(i)); %o A257745 k = k+1; %o A257745 end %o A257745 end %o A257745 % Print terms %o A257745 A = sort(A); %o A257745 fprintf('A = '); %o A257745 fprintf('%i, ',A); %o A257745 % When running the code be aware that the last terms you get might not be correct. %o A257745 % They correspond to the points on the outer edges of the spiral which might be %o A257745 % altered when considering a larger spiral. %o A257745 % Use larger spiral to get more terms %Y A257745 Cf. A257527, A257528, A000040. %K A257745 nonn %O A257745 1,1 %A A257745 Vardan Semerjyan, May 07 2015