cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A343423 Prime numbers p such that Euclidean distance from origin to p in hexagonal grid sets a new record. Number '1' is placed at the origin and '2' at (1, 0). Number 'm' (m >= 3) is placed by moving one unit forward in the direction from 'm-2' to 'm-1', if m - 1 is not a prime; otherwise, making 1/6 turn counterclockwise at 'm-1' followed by moving one unit forward.

Original entry on oeis.org

2, 3, 5, 7, 11, 29, 31, 59, 89, 127, 131, 157, 191, 193, 223, 227, 251, 257, 409, 521, 719, 757, 797, 809, 877, 881, 967, 971, 1009, 1013, 1049, 1087, 1091, 1117, 1123, 1277, 1301, 1361, 1409, 1423, 1447, 1451, 1523, 1531, 1657, 1693, 1697, 1699, 5273, 5323
Offset: 1

Views

Author

Ya-Ping Lu, Apr 15 2021

Keywords

Examples

			Hexagonal grid with integers up to 85:
                         29<---28<---27<---26<-7,25<=6,24<==5/23
                        /                       /              \\
                      30                      8                4/22
                     /                       /                    \\
                  31,53<-52<---51<---50<--9,49<--48<---47         3,21
                  /  \                    /              \        /  \
                54    32                10               1,46--->2    20
               /        \              /                    \           \
           55,79<--78<-33,77<--76<-11,75<--74<---73          45          19
            //             \           \           \           \        /
        56,80               34          12          72          44    18
         //                   \           \           \        /  \  /
     57,81                     35          13--->14->15,71-->16-->17,43
      //                         \                    /           /
  58,82                           36                70          42
   //                               \              /           /
59,83                                37--->38->39,69-->40--->41
   \\                                           /
  60,84                                       68
     \\                                      /
    61,85--->62--->63--->64--->65--->66--->67
Prime number (p), square of the distance (s) from p to origin, and index (n) in the sequence for p up to 71 are:
p:  2  3  5  7  11  13  17  19  23  29  31  37  41  43  47  53   59   61  67  71
s:  1  3  7  9  13  13   9   7   7  37  43  31  19   9   1  43  109  109  43   7
n:  1  2  3  4   5  --  --  --  --   6   7  --  --  --  --  --    8   --  --  --
		

Crossrefs

Programs

  • Python
    from sympy import isprime
    dx = [2, 1, -1, -2, -1, 1]; dy = [0, 1, 1, 0, -1, -1]
    x = 0; y = 0; rec = 0; d = 0
    for n in range(2, 10001):
        if isprime(n-1) == 1: d += 1; d %= 6
        x += dx[d]; y += dy[d]; s = x*x + 3*y*y
        if isprime(n) == 1 and s > rec: print(n); rec = s
Showing 1-1 of 1 results.