This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257746 #7 Dec 16 2017 18:01:59 %S A257746 61,157,199,311,349,409,463,509,557,601,641,691,727,757,823,911,919, %T A257746 1051,1093,1123,1153,1213,1327,1433,1459,1627,1951,2027,2063,2221, %U A257746 2251,2293,2311,2357,2389,2551,2621,2683,2719,2789,2791,2939,2953 %N A257746 Prime numbers that have a heptagonal (7 sides) Voronoi cell in the Voronoi diagram of the Ulam prime spiral. %H A257746 Vardan Semerjyan, <a href="http://smallsats.org/2014/01/03/voronoi-diagram-of-prime-spiral/">Voronoi diagram of prime spiral</a> %o A257746 (MATLAB) %o A257746 clc %o A257746 clear all %o A257746 sz = 201; % Size of the N x N square matrix %o A257746 mat = spiral(sz); % MATLAB Function %o A257746 k = 1; %o A257746 for i =1:sz %o A257746 for j=1:sz %o A257746 if isprime(mat(i,j)) % Check if the number is prime %o A257746 % saving indices of primes %o A257746 y(k) = i; x(k) = j; %o A257746 k = k+1; %o A257746 end %o A257746 end %o A257746 end %o A257746 xy = [x',y']; %o A257746 [v,c] = voronoin(xy); % Returns Voronoi vertices V and %o A257746 % the Voronoi cells C %o A257746 k = 1; %o A257746 for i = 1:length(c) %o A257746 szv = size(v(c{i},1)); %o A257746 polyN(i) = szv(1); %o A257746 if polyN(i) == 7 %o A257746 A(k) = mat(y(i),x(i)); %o A257746 k = k+1; %o A257746 end %o A257746 end %o A257746 % Print terms %o A257746 A = sort(A); %o A257746 fprintf('A = '); %o A257746 fprintf('%i, ',A); %o A257746 % When running the code be aware that the last terms you get might not be correct. %o A257746 % They correspond to the points on the outer edges of the spiral which might be %o A257746 % altered when considering a larger spiral. %o A257746 % Use larger spiral to get more terms %Y A257746 Cf. A257527, A257528, A000040. %K A257746 nonn %O A257746 1,1 %A A257746 _Vardan Semerjyan_, May 07 2015