This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257747 #9 Dec 16 2017 18:02:22 %S A257747 67,491,613,1013,1117,1201,1249,1301,1373,1543,1753,1907,2017,2339, %T A257747 2411,2657,2671,2879,3023,3037,3181,3677,3727,3733,4139,4409,4549, %U A257747 4861,5303,5381,5399,5857,5897,6301,6373,6737,7433,7499,7577,7583 %N A257747 Prime numbers that have an octagonal (8 sides) Voronoi cell in the Voronoi diagram of the Ulam prime spiral. %H A257747 Vardan Semerjyan, <a href="http://smallsats.org/2014/01/03/voronoi-diagram-of-prime-spiral/">Voronoi diagram of prime spiral</a> %o A257747 (MATLAB) %o A257747 sz = 201; % Size of the N x N square matrix %o A257747 mat = spiral(sz); % MATLAB Function %o A257747 k = 1; %o A257747 for i =1:sz %o A257747 for j=1:sz %o A257747 if isprime(mat(i,j)) % Check if the number is prime %o A257747 % saving indices of primes %o A257747 y(k) = i; x(k) = j; %o A257747 k = k+1; %o A257747 end %o A257747 end %o A257747 end %o A257747 xy = [x',y']; %o A257747 [v,c] = voronoin(xy); % Returns Voronoi vertices V and %o A257747 % the Voronoi cells C %o A257747 k = 1; %o A257747 for i = 1:length(c) %o A257747 szv = size(v(c{i},1)); %o A257747 polyN(i) = szv(1); %o A257747 if polyN(i) == 8 %o A257747 A(k) = mat(y(i),x(i)); %o A257747 k = k+1; %o A257747 end %o A257747 end %o A257747 % Print terms %o A257747 A = sort(A); %o A257747 fprintf('A = '); %o A257747 fprintf('%i, ',A); %o A257747 % When running the code be aware that the last terms you get might not be correct. %o A257747 % They correspond to the points on the outer edges of the spiral which might be %o A257747 % altered when considering a larger spiral. %o A257747 % Use larger spiral to get more terms %Y A257747 Cf. A257527, A257528, A000040. %K A257747 nonn %O A257747 1,1 %A A257747 _Vardan Semerjyan_, May 07 2015