This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257748 #9 Dec 16 2017 18:02:59 %S A257748 8741,9533,11087,14629,17077,26029,29723,33247,38723,40177,43991, %T A257748 45677,56369,57709,58027,68749,77479,81727,88117,90173,93053,110933, %U A257748 112297,112901,114859,117773,127219,129841,131771,146161,156719,159293,169369 %N A257748 Prime numbers that have a decagonal (10 sides) Voronoi cell in the Voronoi diagram of the Ulam prime spiral. %H A257748 Vardan Semerjyan, <a href="http://smallsats.org/2014/01/03/voronoi-diagram-of-prime-spiral/">Voronoi diagram of prime spiral</a> %o A257748 (MATLAB) %o A257748 sz = 701; % Size of the N x N square matrix %o A257748 mat = spiral(sz); % MATLAB Function %o A257748 k = 1; %o A257748 for i =1:sz %o A257748 for j=1:sz %o A257748 if isprime(mat(i,j)) % Check if the number is prime %o A257748 % saving indices of primes %o A257748 y(k) = i; x(k) = j; %o A257748 k = k+1; %o A257748 end %o A257748 end %o A257748 end %o A257748 xy = [x',y']; %o A257748 [v,c] = voronoin(xy); % Returns Voronoi vertices V and %o A257748 % the Voronoi cells C %o A257748 k = 1; %o A257748 for i = 1:length(c) %o A257748 szv = size(v(c{i},1)); %o A257748 polyN(i) = szv(1); %o A257748 if polyN(i) == 10 %o A257748 A(k) = mat(y(i),x(i)); %o A257748 k = k+1; %o A257748 end %o A257748 end %o A257748 % Print terms %o A257748 A = sort(A); %o A257748 fprintf('A = '); %o A257748 fprintf('%i, ',A); %o A257748 % When running the code be aware that the last terms you get might not be correct. %o A257748 % They correspond to the points on the outer edges of the spiral which might be %o A257748 % altered when considering a larger spiral. %o A257748 % Use larger spiral to get more terms %Y A257748 Cf. A257527, A257528, A000040. %K A257748 nonn %O A257748 1,1 %A A257748 _Vardan Semerjyan_, May 07 2015