A257752 Quasi-Carmichael numbers to exactly two bases.
221, 323, 899, 935, 1105, 1147, 1271, 1591, 1595, 1885, 2093, 2465, 2821, 4757, 4807, 4991, 5609, 5963, 6497, 7081, 7843, 9991, 10373, 10403, 10961, 11009, 12319, 13843, 14111, 16031, 17155, 17399, 17653, 17963, 19043, 19721, 20701, 24613, 27331, 28417, 29341
Offset: 1
Keywords
Examples
a(1) = 221 because this is the first squarefree composite number n such that exactly two integers b except 0 exist such that for every prime factor p of n, p+b divides n+b (-11, -5): 221=13*17 and 2, 6 both divide 210 and 8, 12 both divide 216.
Links
- Tim Johannes Ohrtmann, Table of n, a(n) for n = 1..1487
Crossrefs
Programs
-
PARI
for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1), n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k==2, print1(n, ", ")))))