cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257753 Quasi-Carmichael numbers to exactly three bases.

Original entry on oeis.org

1517, 1763, 4331, 4453, 5183, 5767, 9797, 10573, 12317, 14351, 16637, 34571, 35657, 38021, 38191, 38407, 40723, 41989, 50429, 50851, 57599, 67721, 70151, 75067, 79523, 87953, 111547, 117613, 150463, 159559, 167137, 173633, 181451, 190087, 191819, 197881, 205193
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 07 2015

Keywords

Examples

			a(1) = 1517 because this is the first squarefree composite number n such that exactly three integers b except 0 exist such that for every prime factor p of n, p+b divides n+b (-35, -32, -29): 1517=37*41 and 2, 6 both divide 1482 and 5, 9 both divide 1485 and 8, 12 divide 1488.
		

Crossrefs

Cf. A257750 (every number of bases).
Cf. A257751, A257752, A257754, A257755, A257756, A257757, A258842 (1, 2, 4, 5, 6, 7 and 8 bases).
Cf. A257758 (first occurrences).

Programs

  • PARI
    for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1), n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k==3, print1(n, ", ")))))