A257754 Quasi-Carmichael numbers to exactly four bases.
60491, 61937, 65311, 76151, 116843, 127723, 159197, 164009, 168821, 194417, 272483, 284987, 329467, 364087, 369857, 370817, 385241, 389327, 395497, 407837, 423701, 431393, 465043, 509461, 613927, 837209, 853607, 881717, 999919, 1041541, 1117213, 1279903, 1294819
Offset: 1
Keywords
Examples
a(1) = 60491 because this is the first squarefree composite number n such that exactly four integers b except 0 exist such that for every prime factor p of n, p+b divides n+b (-239, -236, -231, -191): 60491=241*251 and 2, 12 both divide 60252 and 5, 15 both divide 60255 and 10, 20 both divide 60260 and 50, 60 both divide 60300.
Links
- Tim Johannes Ohrtmann, Table of n, a(n) for n = 1..145
Crossrefs
Programs
-
PARI
for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1), n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k==4, print1(n, ", ")))))