A257757 Quasi-Carmichael numbers to exactly seven bases.
777923, 1030189, 1060459, 4903309, 5493247, 5659637, 6431071, 6673087, 6778969, 9790577, 11390429, 11860969, 12053263, 12390319, 12602059, 21215011, 21842629, 22991989, 24005239, 39339667, 39929437, 40080661, 40761169, 42314449, 50979479, 51876007, 54345943
Offset: 1
Keywords
Examples
a(1) = 777923 because this is the first squarefree composite number n such that exactly seven integers b except 0 exist such that for every prime factor p of n, p+b divides n+b (-879, -878, -875, -872, -867, -863, -839): 777923=881*883 and 2, 4 both divide 777044 and 3, 5 both divide 777045 and 6, 8 both divide 777048 and 9, 11 both divide 777051 and 14, 16 both divide 777056 and 18, 20 both divide 777060 and 42, 44 both divide 777084.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..5885
Crossrefs
Programs
-
PARI
for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1), n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k==7, print1(n, ", ")))))
Extensions
a(16)-a(27) from Hiroaki Yamanouchi, Sep 26 2015
Comments