cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257764 Lexicographically largest increasing sequence of primes for which the continued square root map (see A257574) produces the decimal expansion of e (Euler's number).

This page as a plain text file.
%I A257764 #13 May 04 2018 11:26:35
%S A257764 3,13,31,59,67,103,179,193,227,229,317,983,1201,1213,1321,1787,1811,
%T A257764 2179,3571,4817,5333,6803,10433,12197,13063,19391,21283,24571,31817,
%U A257764 42307,45377,49957,61909,67933,70573,74843,82421,85909,91099,99241,101293,109639,112087
%N A257764 Lexicographically largest increasing sequence of primes for which the continued square root map (see A257574) produces the decimal expansion of e (Euler's number).
%C A257764 Similar to A257582, but converging to e.
%H A257764 Chai Wah Wu, <a href="/A257764/b257764.txt">Table of n, a(n) for n = 1..1000</a>
%H A257764 Popular Computing (Calabasas, CA), <a href="/A257352/a257352.pdf">The CSR Function</a>, Vol. 4 (No. 34, Jan 1976), pages PC34-10 to PC34-11. Annotated and scanned copy.
%H A257764 Herman P. Robinson, <a href="/A257574/a257574.pdf">The CSR Function</a>, Popular Computing (Calabasas, CA), Vol. 4 (No. 35, Feb 1976), pages PC35-3 to PC35-4. Annotated and scanned copy.
%e A257764 sqrt(3) =  1.7320508075688772...
%e A257764 sqrt(3+sqrt(13)) = 2.570126704165378...
%e A257764 sqrt(3+sqrt(13+sqrt(31))) = 2.703522309917472...
%e A257764 sqrt(3+sqrt(13+sqrt(31+sqrt(59)))) = 2.7173508299457327...
%e A257764 sqrt(3+sqrt(13+sqrt(31+sqrt(59+sqrt(67))))) = 2.718217091497069...
%e A257764 sqrt(3+sqrt(13+sqrt(31+sqrt(59+sqrt(67+sqrt(103)))))) = 2.7182780002752187...
%o A257764 (PARI) (CSR(v, s)=forstep(i=#v, 1, -1, s=sqrt(v[i]+s)); s); a=[3]; for(n=1, 50, print1(a[#a]", "); for(i=primepi(a[#a])+1, oo, CSR(concat(a, vector(9, j, prime(i+j))))>=exp(1)&& (a=concat(a, prime(i)))&& break)) \\ The standard precision of 38 digits yields incorrect terms beyond 10433. Increase realprecision to compute larger values. - _M. F. Hasler_, May 03 2018
%Y A257764 Cf. A001113 (e), A257582 (analog for Pi instead of e), A257809 (analog for delta = 4.6692...), A257574.
%K A257764 nonn
%O A257764 1,1
%A A257764 _Chai Wah Wu_, May 09 2015
%E A257764 Edited by _M. F. Hasler_, May 03 2018