cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257767 Positive integers whose square is the sum of 33 consecutive squares.

This page as a plain text file.
%I A257767 #21 Sep 08 2022 08:46:12
%S A257767 143,253,440,1133,1397,3608,6325,11495,20152,52063,64207,165880,
%T A257767 290807,528517,926552,2393765,2952125,7626872,13370797,24300287,
%U A257767 42601240,110061127,135733543,350670232,614765855,1117284685,1958730488,5060418077,6240790853
%N A257767 Positive integers whose square is the sum of 33 consecutive squares.
%C A257767 Positive integers x in the solutions to 2*x^2-66*y^2-2112*y-22880 = 0.
%H A257767 Colin Barker, <a href="/A257767/b257767.txt">Table of n, a(n) for n = 1..1000</a>
%H A257767 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,46,0,0,0,0,0,-1).
%F A257767 a(n) = 46*a(n-6)-a(n-12).
%F A257767 G.f.: -11*x*(8*x^11+5*x^10+5*x^9+8*x^8+13*x^7+23*x^6-328*x^5-127*x^4-103*x^3-40*x^2-23*x-13) / (x^12-46*x^6+1).
%e A257767 143 is in the sequence because 143^2 = 20449 = 7^2+8^2+...+39^2.
%t A257767 LinearRecurrence[{0, 0, 0, 0, 0, 46, 0, 0, 0, 0, 0, -1}, {143, 253, 440, 1133, 1397, 3608, 6325, 11495, 20152, 52063, 64207, 165880}, 50] (* _Vincenzo Librandi_, May 08 2015 *)
%o A257767 (PARI) Vec(-11*x*(8*x^11+5*x^10+5*x^9+8*x^8+13*x^7+23*x^6-328*x^5-127*x^4-103*x^3-40*x^2-23*x-13) / (x^12-46*x^6+1) + O(x^100))
%o A257767 (Magma) I:=[143,253,440,1133,1397,3608,6325,11495,20152, 52063,64207,165880]; [n le 12 select I[n] else 46*Self(n-6)-Self(n-12): n in [1..30]]; // _Vincenzo Librandi_, May 11 2015
%Y A257767 Cf. A001032, A001653, A180274, A218395, A257761, A257765, A257780, A257781, A257823-A257828.
%K A257767 nonn,easy
%O A257767 1,1
%A A257767 _Colin Barker_, May 07 2015