This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257776 #13 May 22 2023 02:35:35 %S A257776 7,4,3,9,0,8,7,7,4,9,3,2,8,7,6,5,8,2,9,9,7,3,5,2,9,5,0,1,6,9,6,9,3,2, %T A257776 5,5,4,4,3,9,9,6,5,8,6,6,1,3,1,1,6,6,7,2,0,1,4,0,3,4,6,0,1,0,9,9,9,5, %U A257776 7,2,5,4,7,4,4,1,4,7,1,7,5,2,2,9,7,9,6,1,9,1,1,2,0,4,8,2,1,3,7,1,1,6,8,0,0 %N A257776 Decimal expansion of (e/3)^3. %C A257776 The coefficient a of the unique cubic function y=a*x^3 which kisses the exponential function y=exp(x). In general, a function y = c*x^n kisses the exponential at some x > 0 iff the coefficient c equals (e/n)^n. The kissing point is (n, e^n). %H A257776 Stanislav Sykora, <a href="/A257776/b257776.txt">Table of n, a(n) for n = 0..2000</a> %e A257776 0.743908774932876582997352950169693255443996586613116672014034601... %t A257776 RealDigits[(E/3)^3, 10, 120][[1]] (* _Amiram Eldar_, May 22 2023 *) %o A257776 (PARI) (exp(3)/3)^3 %Y A257776 Cf. A001113, A019740; A257775 (n=2), A257777 (n=1). %K A257776 nonn,cons,easy %O A257776 0,1 %A A257776 _Stanislav Sykora_, May 12 2015