cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257781 Positive integers whose square is the sum of 50 consecutive squares.

This page as a plain text file.
%I A257781 #14 Aug 07 2025 13:14:53
%S A257781 245,385,495,655,795,1055,1365,2205,2855,3795,4615,6135,7945,12845,
%T A257781 16635,22115,26895,35755,46305,74865,96955,128895,156755,208395,
%U A257781 269885,436345,565095,751255,913635,1214615,1573005,2543205,3293615,4378635,5325055,7079295
%N A257781 Positive integers whose square is the sum of 50 consecutive squares.
%C A257781 Positive integers x in the solutions to 2*x^2-100*y^2-4900*y-80850 = 0.
%H A257781 Colin Barker, <a href="/A257781/b257781.txt">Table of n, a(n) for n = 1..1000</a>
%H A257781 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,6,0,0,0,0,0,-1).
%F A257781 a(n) = 6*a(n-6)-a(n-12).
%F A257781 G.f.: -5*x*(39*x^11 +31*x^10 +27*x^9 +23*x^8 +21*x^7 +21*x^6 -211*x^5 -159*x^4 -131*x^3 -99*x^2 -77*x -49) / ((x^6 -2*x^3 -1)*(x^6 +2*x^3 -1)).
%e A257781 245 is in the sequence because 245^2 = 60025 = 7^2+8^2+...+56^2.
%t A257781 LinearRecurrence[{0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, -1}, {245, 385, 495, 655, 795, 1055, 1365, 2205, 2855, 3795, 4615, 6135}, 50] (* _Vincenzo Librandi_, May 11 2015 *)
%t A257781 Select[Sqrt[Total/@Partition[Range[10^6]^2,50,1]],IntegerQ] (* _Harvey P. Dale_, Aug 07 2025 *)
%o A257781 (PARI) Vec(-5*x*(39*x^11 +31*x^10 +27*x^9 +23*x^8 +21*x^7 +21*x^6 -211*x^5 -159*x^4 -131*x^3 -99*x^2 -77*x -49) / ((x^6 -2*x^3 -1)*(x^6 +2*x^3 -1)) + O(x^100))
%o A257781 (Magma) I:=[245,385,495,655,795,1055,1365,2205,2855,3795, 4615,6135]; [n le 12 select I[n] else 6*Self(n-6)-Self(n-12): n in [1..40]]; // _Vincenzo Librandi_, May 11 2015
%Y A257781 Cf. A001653, A180274, A218395, A257761, A257765, A257767, A257780, A257823-A257828.
%K A257781 nonn,easy
%O A257781 1,1
%A A257781 _Colin Barker_, May 08 2015