This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257784 #26 Mar 23 2020 06:21:11 %S A257784 0,1,512,2511,4913,5832,17576,19683,24624,32144,37000,111616,382360, %T A257784 415000,420224,2219400,14041600,16328000,19300032,30681423,39203125, %U A257784 62025728,78535423,186836625,214292000,432265248,1120141312,3479669440,18529084125,25342447725 %N A257784 Numbers n such that the sum of the digits squared times the sum of the digits of n to some power equals n. %C A257784 When the power is 1 the numbers are the cubes of their digit sum (A061209). %C A257784 There are no 2-digit and 18-digit terms. - _Chai Wah Wu_, Jan 11 2016 %H A257784 Giovanni Resta and Chai Wah Wu, <a href="/A257784/b257784.txt">Table of n, a(n) for n = 1..80</a> n = 1..43 from Giovanni Resta %e A257784 For power 2: 24624 = (2+4+6+2+4)^2*(2^2+4^2+6^2+2^2+4^2). %e A257784 For power 3: 111616 = (1+1+1+6+1+6)^2*(1^3+1^3+1^3+6^3+1^3+6^3). %o A257784 (Python) %o A257784 # WARNING: this prints numbers in the sequence, but not in increasing order. %o A257784 def moda(n,a): %o A257784 kk = 0 %o A257784 while n > 0: %o A257784 kk= kk+(n%10)**a %o A257784 n =int(n//10) %o A257784 return kk %o A257784 def sod(n): %o A257784 kk = 0 %o A257784 while n > 0: %o A257784 kk= kk+(n%10) %o A257784 n =int(n//10) %o A257784 return kk %o A257784 for a in range (1, 10): %o A257784 for c in range (1, 10**8): %o A257784 if c==sod(c)**2*moda(c,a): %o A257784 print(c, end=",") %Y A257784 Cf. A061209, A115518, A130680. %K A257784 base,nonn %O A257784 1,3 %A A257784 _Pieter Post_, May 08 2015 %E A257784 a(16)-a(30) from _Giovanni Resta_, May 09 2015