This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257786 #17 May 22 2025 10:21:42 %S A257786 0,1,27,376,13131,234595324075,54377519037479592374299, %T A257786 8326623359858152426050700,1513868951125582592290131113769528 %N A257786 Numbers n such that the square root of the sum of the digits times the sum of the digits of n in some power equal n. %C A257786 It appears that this sequence is finite. %e A257786 376 = sqrt(3+7+6)*(3^2+7^2+6^2). %e A257786 13131 = sqrt(1+3+1+3+1)*(1^7+3^7+1^7+3^7+1^7). %o A257786 (Python) %o A257786 def moda(n,a): %o A257786 kk = 0 %o A257786 while n > 0: %o A257786 kk= kk+(n%10)**a %o A257786 n =int(n//10) %o A257786 return kk %o A257786 def sod(n): %o A257786 kk = 0 %o A257786 while n > 0: %o A257786 k= kk+(n%10) %o A257786 n =int(n//10) %o A257786 return kk %o A257786 for a in range (1, 10): %o A257786 for c in range (1, 10**8): %o A257786 if c**2==sod(c)*moda(c,a)**2: %o A257786 print (a,c, sod(c),moda(c,a)) %Y A257786 Cf. A028839, A061209, A115518, A130680. %K A257786 base,nonn,more %O A257786 1,3 %A A257786 _Pieter Post_, May 08 2015 %E A257786 a(6) from _Giovanni Resta_, May 09 2015 %E A257786 a(7)-a(9) from _Chai Wah Wu_, Nov 29 2015