This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257787 #19 May 22 2025 10:21:42 %S A257787 1,2,3,4,5,6,7,8,9,37,48,415,231591,3829377463694454, %T A257787 56407086228259246207394322684 %N A257787 Numbers n such that the sum of the digits of n to some power divided by the sum of the digits equal n. %C A257787 The first nine terms are trivial, but then the terms become very rare. It appears that this sequence is finite. %e A257787 37 = (3^3+7^3)/(3+7). %e A257787 231591 = (2^7+3^7+1^7+5^7+9^7+1^7)/(2+3+1+5+9+1). %o A257787 (Python) %o A257787 def moda(n,a): %o A257787 kk = 0 %o A257787 while n > 0: %o A257787 kk= kk+(n%10)**a %o A257787 n =int(n//10) %o A257787 return kk %o A257787 def sod(n): %o A257787 kk = 0 %o A257787 while n > 0: %o A257787 kk= kk+(n%10) %o A257787 n =int(n//10) %o A257787 return kk %o A257787 for a in range (1, 10): %o A257787 for c in range (1, 10**6): %o A257787 if c*sod(c)==moda(c, a): %o A257787 print (a,c, moda(c,a),sod(c)) %Y A257787 Cf. A061209, A115518, A111434, A114135, A130680, A257784, A257768. %K A257787 nonn,base,more %O A257787 1,2 %A A257787 _Pieter Post_, May 08 2015 %E A257787 a(14) from _Giovanni Resta_, May 09 2015 %E A257787 a(15) from _Chai Wah Wu_, Nov 30 2015