cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257791 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = 2^(n+1)*(2*k - 1), n,k >= 1.

This page as a plain text file.
%I A257791 #14 Nov 05 2015 14:32:26
%S A257791 4,8,12,16,24,20,32,48,40,28,64,96,80,56,36,128,192,160,112,72,44,256,
%T A257791 384,320,224,144,88,52,512,768,640,448,288,176,104,60,1024,1536,1280,
%U A257791 896,576,352,208,120,68,2048,3072,2560,1792,1152,704,416,240,136,76
%N A257791 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = 2^(n+1)*(2*k - 1), n,k >= 1.
%C A257791 Lemma: The sequence is a permutation of A008586\{0} = {4*m : m = 1,2,...}.
%C A257791 Proof: Write A(n,k)/4 = A054582(n-1,k-1). The sequence A054582 is known to be a permutation of the natural numbers, and the result follows. QED
%F A257791 A(n,n) = 4*A014480(n-1).
%e A257791 Array A begins:
%e A257791 .       4    12     20     28     36     44     52     60     68     76
%e A257791 .       8    24     40     56     72     88    104    120    136    152
%e A257791 .      16    48     80    112    144    176    208    240    272    304
%e A257791 .      32    96    160    224    288    352    416    480    544    608
%e A257791 .      64   192    320    448    576    704    832    960   1088   1216
%e A257791 .     128   384    640    896   1152   1408   1664   1920   2176   2432
%e A257791 .     256   768   1280   1792   2304   2816   3328   3840   4352   4864
%e A257791 .     512  1536   2560   3584   4608   5632   6656   7680   8704   9728
%e A257791 .    1024  3072   5120   7168   9216  11264  13312  15360  17408  19456
%e A257791 .    2048  6144  10240  14336  18432  22528  26624  30720  34816  38912
%t A257791 (* Array: *)
%t A257791 A257791[n_, k_] := 2^(n + 1)*(2*k - 1); Grid[Table[A257791[n, k], {n, 10}, {k, 10}]]
%t A257791 (* Array antidiagonals flattened: *)
%t A257791 Flatten[Table[2^(n - k + 2)*(2*k - 1), {n, 10}, {k, n}]]
%Y A257791 Cf. A000079 (powers of 2), A005408 (odd numbers), A008586 (multiples of 4), A014480, A054582.
%Y A257791 Cf. A257499.
%K A257791 nonn,tabl
%O A257791 1,1
%A A257791 _L. Edson Jeffery_, May 08 2015