A257817 Decimal expansion of the real part of li(i), i being the imaginary unit.
4, 7, 2, 0, 0, 0, 6, 5, 1, 4, 3, 9, 5, 6, 8, 6, 5, 0, 7, 7, 7, 6, 0, 6, 1, 0, 7, 6, 1, 4, 1, 2, 7, 8, 3, 6, 5, 0, 7, 3, 3, 0, 5, 4, 3, 0, 1, 8, 3, 6, 1, 8, 8, 1, 8, 6, 8, 3, 8, 3, 7, 1, 8, 9, 9, 3, 8, 5, 8, 0, 3, 7, 7, 6, 9, 5, 3, 1, 3, 0, 8, 5, 0, 9, 3, 3, 7, 9, 7, 0, 7, 6, 0, 4, 9, 2, 9, 2, 1, 2, 0, 0, 1, 5, 3
Offset: 0
Examples
0.47200065143956865077760610761412783650733054301836188186838371...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Eric Weisstein's World of Mathematics, Logarithmic Integral
- Wikipedia, Logarithmic integral function
Programs
-
Maple
evalf(Re(Li(I)),120); # Vaclav Kotesovec, May 10 2015
-
Mathematica
RealDigits[Re[LogIntegral[I]], 10, 120][[1]] (* Vaclav Kotesovec, May 10 2015 *)
-
PARI
li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex if(imag(c)<0, return(-Pi*I-eint1(-log(c))), return(+Pi*I-eint1(-log(c)))); } a=real(li(I))
Formula
Equals gamma + log(Pi/2) + Sum_{k>=1}((-1)^k*(Pi/2)^(2*k)/(2*k)!/(2*k)).
Equals Ci(Pi/2), the maximum value of the cosine integral along the real axis. - Stanislav Sykora, Nov 12 2016
Comments