A257818 Decimal expansion of the imaginary part of li(i), i being the imaginary unit.
2, 9, 4, 1, 5, 5, 8, 4, 9, 4, 9, 4, 9, 3, 8, 5, 0, 9, 9, 3, 0, 0, 9, 9, 9, 9, 8, 0, 0, 2, 1, 3, 2, 6, 7, 7, 2, 0, 8, 9, 4, 4, 6, 0, 3, 5, 2, 5, 1, 9, 2, 1, 5, 9, 0, 1, 2, 2, 7, 0, 4, 4, 3, 9, 2, 8, 3, 9, 4, 3, 5, 6, 4, 2, 1, 1, 0, 6, 0, 7, 2, 5, 0, 3, 4, 0, 8, 2, 6, 5, 3, 4, 8, 4, 9, 5, 9, 0, 9, 4, 9, 3, 4, 6, 7
Offset: 1
Examples
2.941558494949385099300999980021326772089446035251921590122704439...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Logarithmic Integral
- Wikipedia, Logarithmic integral function
Programs
-
Maple
evalf(Im(Li(I)), 120); # Vaclav Kotesovec, May 10 2015 evalf(Pi/2*(1+Sum(((-1)^k*(Pi/2)^(2*k)/(2*k+1)!/(2*k+1)), k=0..infinity)), 120); # Vaclav Kotesovec, May 10 2015
-
Mathematica
RealDigits[Im[LogIntegral[I]], 10, 120][[1]] (* Vaclav Kotesovec, May 10 2015 *)
-
PARI
li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex if(imag(c)<0, return(-Pi*I-eint1(-log(c))), return(+Pi*I-eint1(-log(c))));} a=imag(li(I))
Formula
Equals (Pi/2)*(1+Sum_{k>=0}((-1)^k*(Pi/2)^(2*k)/(2*k+1)!/(2*k+1))).
Comments