A257820 Decimal expansion of the absolute value of the imaginary part of li(-1).
3, 4, 2, 2, 7, 3, 3, 3, 7, 8, 7, 7, 7, 3, 6, 2, 7, 8, 9, 5, 9, 2, 3, 7, 5, 0, 6, 1, 7, 9, 7, 7, 4, 2, 8, 0, 5, 4, 4, 4, 3, 9, 4, 4, 2, 8, 6, 6, 8, 7, 0, 7, 8, 2, 0, 2, 9, 2, 2, 5, 6, 0, 7, 8, 0, 3, 0, 8, 9, 0, 0, 9, 3, 3, 0, 9, 4, 5, 2, 8, 5, 7, 8, 4, 6, 7, 2, 7, 7, 4, 9, 1, 7, 4, 0, 1, 3, 2, 9, 1, 6, 9, 2, 7, 5
Offset: 1
Examples
3.422733378777362789592375061797742805444394428668707820292256...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Logarithmic Integral
- Wikipedia, Logarithmic integral function
Programs
-
Maple
evalf(Im(Li(-1)),120); # Vaclav Kotesovec, May 11 2015
-
Mathematica
RealDigits[Im[LogIntegral[-1]], 10, 120][[1]] (* Vaclav Kotesovec, May 11 2015 *)
-
PARI
li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex if(imag(c)<0, return(-Pi*I-eint1(-log(c))), return(+Pi*I-eint1(-log(c)))); } a=imag(li(-1))
Formula
Equals Pi*(1/2 + Sum[k=0..infinity]((-1)^k*Pi^(2*k)/(2*k+1)!/(2*k+1))).
Comments