A257821 Decimal expansion of the unique real number a>0 such that the real part of li(-a) is zero.
2, 4, 6, 6, 4, 0, 8, 2, 6, 2, 4, 1, 2, 6, 7, 8, 0, 7, 5, 1, 9, 7, 1, 0, 3, 3, 5, 0, 7, 7, 5, 9, 3, 2, 9, 5, 0, 2, 9, 0, 7, 8, 0, 8, 7, 8, 2, 7, 7, 4, 0, 9, 9, 8, 2, 3, 7, 8, 6, 0, 8, 9, 8, 8, 1, 6, 1, 2, 2, 4, 0, 9, 4, 1, 5, 0, 0, 9, 1, 5, 0, 7, 1, 7, 1, 6, 2, 7, 8, 1, 5, 8, 0, 4, 6, 5, 5, 8, 4, 7, 2, 9, 3, 3, 6
Offset: 1
Examples
2.4664082624126780751971033507759329502907808782774099823786...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Logarithmic Integral
- Wikipedia, Logarithmic integral function
Programs
-
Mathematica
RealDigits[a/.FindRoot[Re[LogIntegral[-a]]==0,{a,2},WorkingPrecision->120]][[1]] (* Vaclav Kotesovec, May 11 2015 *)
-
PARI
li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex if(imag(c)<0, return(-Pi*I-eint1(-log(c))), return(+Pi*I-eint1(-log(c)))); } a=-solve(x=-3,-1,real(li(x))) \\ Better use excess realprecision
Formula
Satisfies real(li(-a)) = 0.
Comments