A257822 Decimal expansion of the absolute value of the imaginary part of li(-A257821).
3, 8, 7, 4, 5, 0, 1, 0, 4, 9, 3, 1, 2, 8, 7, 3, 6, 2, 2, 3, 7, 0, 9, 6, 9, 7, 1, 3, 5, 0, 6, 3, 3, 9, 0, 1, 2, 3, 8, 4, 0, 5, 8, 0, 4, 0, 5, 4, 5, 0, 4, 8, 4, 6, 3, 7, 7, 3, 4, 0, 2, 1, 4, 5, 6, 4, 6, 0, 3, 2, 4, 7, 8, 2, 1, 6, 8, 6, 5, 4, 3, 7, 2, 6, 5, 3, 3, 8, 6, 7, 8, 2, 3, 8, 9, 5, 3, 1, 1, 4, 8, 4, 6, 1, 2
Offset: 1
Examples
3.87450104931287362237096971350633901238405804054504846377340...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Logarithmic Integral
- Wikipedia, Logarithmic integral function
Programs
-
Mathematica
RealDigits[Im[LogIntegral[-a/.FindRoot[Re[LogIntegral[-a]]==0,{a,2},WorkingPrecision->120]]]][[1]] (* Vaclav Kotesovec, May 11 2015 *)
-
PARI
li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex if(imag(c)<0, return(-Pi*I-eint1(-log(c))), return(+Pi*I-eint1(-log(c)))); } root=solve(x=-3,-1,real(li(x))); \\ Better use excess realprecision a=imag(li(root))
Comments