cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257824 Positive integers whose square is the sum of 73 consecutive squares.

This page as a plain text file.
%I A257824 #10 Sep 08 2022 08:46:12
%S A257824 4088,23360,1582640,9047912,18642443912,106578370640,7220791811360,
%T A257824 41281080400088,85056113063608088,486263602888235360,
%U A257824 32944848197744794640,188344846763231651912,388068345740467131839912,2218576715650261475158640,150310804012507009263599360
%N A257824 Positive integers whose square is the sum of 73 consecutive squares.
%C A257824 Positive integers x in the solutions to 2*x^2-146*y^2-10512*y-254040 = 0.
%H A257824 Colin Barker, <a href="/A257824/b257824.txt">Table of n, a(n) for n = 1..600</a>
%H A257824 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,4562498,0,0,0,-1).
%F A257824 a(n) = 4562498*a(n-4)-a(n-8).
%F A257824 G.f.: -584*x*(x-1)*(7*x^6+47*x^5+2757*x^4+18250*x^3+2757*x^2+47*x+7) / ((x^4-2136*x^2-1)*(x^4+2136*x^2-1)).
%e A257824 4088 is in the sequence because 4088^2 = 16711744 = 442^2+443^2+...+514^2.
%t A257824 LinearRecurrence[{0, 0, 0, 4562498, 0, 0, 0, -1}, {4088, 23360, 1582640, 9047912, 18642443912, 106578370640, 7220791811360, 41281080400088}, 40] (* _Vincenzo Librandi_, May 11 2015 *)
%o A257824 (PARI) Vec(-584*x*(x-1)*(7*x^6+47*x^5+2757*x^4+18250*x^3+2757*x^2+47*x+7) / ((x^4-2136*x^2-1)*(x^4+2136*x^2-1)) + O(x^100))
%o A257824 (Magma) I:=[4088,23360,1582640,9047912,18642443912, 106578370640,7220791811360,41281080400088]; [n le 8 select I[n] else 4562498*Self(n-4)-Self(n-8): n in [1..20]]; // _Vincenzo Librandi_, May 11 2015
%Y A257824 Cf. A001653, A180274, A218395, A257761, A257765, A257767, A257780, A257781, A257823, A257825-A257828.
%K A257824 nonn,easy
%O A257824 1,1
%A A257824 _Colin Barker_, May 10 2015