cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257825 Positive integers whose square is the sum of 74 consecutive squares.

This page as a plain text file.
%I A257825 #9 Sep 08 2022 08:46:12
%S A257825 2257,2849,21941,27713,604765,763865,16669573,21054961,162316669,
%T A257825 205018517,4474051285,5651073085,123321498797,155764598629,
%U A257825 1200818695321,1516726961053,33099030801665,41806637918965,912332431430633,1152346479602381,8883656545668089
%N A257825 Positive integers whose square is the sum of 74 consecutive squares.
%C A257825 Positive integers x in the solutions to 2*x^2-148*y^2-10804*y-264698 = 0.
%H A257825 Colin Barker, <a href="/A257825/b257825.txt">Table of n, a(n) for n = 1..1000</a>
%H A257825 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,7398,0,0,0,0,0,-1).
%F A257825 a(n) = 7398*a(n-6)-a(n-12).
%F A257825 G.f.: -37*x*(5*x^11+5*x^10+61*x^9+77*x^8+593*x^7+749*x^6-20645*x^5-16345*x^4-749*x^3-593*x^2-77*x-61) / ((x^6-86*x^3-1)*(x^6+86*x^3-1)).
%e A257825 2257 is in the sequence because 2257^2 = 5094049 = 225^2+226^2+...+298^2.
%t A257825  LinearRecurrence[{0, 0, 0, 0, 0, 7398, 0, 0, 0, 0, 0, -1}, {2257, 2849, 21941, 27713, 604765, 763865, 16669573, 21054961, 162316669, 205018517, 4474051285, 5651073085}, 40] (* _Vincenzo Librandi_, May 11 2015 *)
%o A257825 (PARI) Vec(-37*x*(5*x^11+5*x^10+61*x^9+77*x^8+593*x^7+749*x^6-20645*x^5-16345*x^4-749*x^3-593*x^2-77*x-61) / ((x^6-86*x^3-1)*(x^6+86*x^3-1)) + O(x^100))
%o A257825 (Magma) I:=[2257,2849,21941,27713,604765,763865,16669573, 21054961,162316669,205018517,4474051285,5651073085]; [n le 12 select I[n] else 7398*Self(n-6)-Self(n-12): n in [1..40]]; // _Vincenzo Librandi_, May 11 2015
%Y A257825 Cf. A001653, A180274, A218395, A257761, A257765, A257767, A257780, A257781, A257823, A257824, A257826-A257828.
%K A257825 nonn,easy
%O A257825 1,1
%A A257825 _Colin Barker_, May 10 2015