cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257827 Positive integers whose square is the sum of 96 consecutive squares.

This page as a plain text file.
%I A257827 #12 Sep 08 2022 08:46:12
%S A257827 652,724,788,1012,1828,2372,2596,2908,6164,6908,7564,9836,17996,23404,
%T A257827 25628,28724,60988,68356,74852,97348,178132,231668,253684,284332,
%U A257827 603716,676652,740956,963644,1763324,2293276,2511212,2814596,5976172,6698164,7334708
%N A257827 Positive integers whose square is the sum of 96 consecutive squares.
%C A257827 Positive integers x in the solutions to 2*x^2-192*y^2-18240*y-580640 = 0.
%H A257827 Colin Barker, <a href="/A257827/b257827.txt">Table of n, a(n) for n = 1..1000</a>
%H A257827 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,-1).
%F A257827 a(n) = 10*a(n-8) -a(n-16).
%F A257827 G.f.: -4*x*(89*x^15 +83*x^14 +79*x^13 +71*x^12 +71*x^11 +79*x^10 +83*x^9 +89*x^8 -727*x^7 -649*x^6 -593*x^5 -457*x^4 -253*x^3 -197*x^2 -181*x-163) / (x^16 -10*x^8 +1).
%e A257827 652 is in the sequence because 652^2 = 425104 = 13^2+14^2+...+108^2.
%t A257827 LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, -1}, {652, 724, 788, 1012, 1828, 2372, 2596, 2908, 6164, 6908, 7564, 9836, 17996, 23404, 25628, 28724}, 40] (* _Vincenzo Librandi_, May 11 2015 *)
%o A257827 (PARI)
%o A257827 Vec(-4*x*(89*x^15 +83*x^14 +79*x^13 +71*x^12 +71*x^11 +79*x^10 +83*x^9 +89*x^8 -727*x^7 -649*x^6 -593*x^5 -457*x^4 -253*x^3 -197*x^2 -181*x -163) / (x^16-10*x^8+1) + O(x^100))
%o A257827 (Magma) I:=[652,724,788,1012,1828,2372,2596,2908,6164,6908, 7564,9836,17996,23404,25628,28724]; [n le 16 select I[n] else 10*Self(n-8)-Self(n-16): n in [1..40]]; // _Vincenzo Librandi_, May 11 2015
%Y A257827 Cf. A001653, A180274, A218395, A257761, A257765, A257767, A257780, A257781, A257823-A257826, A257828.
%K A257827 nonn,easy
%O A257827 1,1
%A A257827 _Colin Barker_, May 10 2015