cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257828 Positive integers whose square is the sum of 97 consecutive squares.

This page as a plain text file.
%I A257828 #13 Sep 08 2022 08:46:12
%S A257828 679,1545404,3675742735,81619738879,194132514608060,
%T A257828 461744104375531831,10253011689091642135,24386783991798773338556,
%U A257828 58003955471481693294113311,1287975802673112210113634031,3063449905150311732357259611836,7286414311424213782299531873117895
%N A257828 Positive integers whose square is the sum of 97 consecutive squares.
%C A257828 Positive integers x in the solutions to 2*x^2-194*y^2-18624*y-599072 = 0.
%H A257828 Colin Barker, <a href="/A257828/b257828.txt">Table of n, a(n) for n = 1..370</a>
%H A257828 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,125619266,0,0,-1).
%F A257828 a(n) = 125619266*a(n-3)-a(n-6).
%F A257828 G.f.: -679*x*(x-1)*(x^4+2277*x^3+5415742*x^2+2277*x+1) / (x^6-125619266*x^3+1).
%e A257828 679 is in the sequence because 679^2 = 461041 = 15^2+16^2+...+111^2.
%t A257828 LinearRecurrence[{0, 0, 125619266, 0, 0, -1}, {679, 1545404, 3675742735, 81619738879, 194132514608060, 461744104375531831}, 30] (* _Vincenzo Librandi_, May 11 2015 *)
%t A257828 Rest[CoefficientList[Series[-679x(x-1)(x^4+2277x^3+5415742x^2+ 2277x+1)/ (x^6-125619266x^3+1),{x,0,15}],x]] (* _Harvey P. Dale_, Aug 02 2021 *)
%o A257828 (PARI) Vec(-679*x*(x-1)*(x^4+2277*x^3+5415742*x^2+2277*x+1) / (x^6-125619266*x^3+1) + O(x^100))
%o A257828 (Magma) I:=[679,1545404,3675742735,81619738879, 194132514608060,461744104375531831]; [n le 6 select I[n] else 125619266*Self(n-3)-Self(n-6): n in [1..20]]; // _Vincenzo Librandi_, May 11 2015
%Y A257828 Cf. A001653, A180274, A218395, A257761, A257765, A257767, A257780, A257781, A257823-A257826, A257827.
%K A257828 nonn,easy
%O A257828 1,1
%A A257828 _Colin Barker_, May 10 2015