A257829 The decimal representation of the average of the digits of n starts with the digits of n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 45, 566, 1500, 2250, 3750, 18000, 383333, 4428571, 11250000, 788888888, 1000000000, 2000000000, 3000000000, 4000000000, 5000000000, 6000000000, 7000000000, 8000000000, 9000000000, 44545454545, 358333333333, 4461538461538
Offset: 1
Examples
566 is a term since the mean of its digits is (5+6+6)/3 = 17/3 and the first 3 digits of 17/3 = 5.6666... are 566. - corrected by _Joseph L. Wetherell_, Mar 17 2018
Links
- Giovanni Resta, Table of n, a(n) for n = 1..876 (terms < 10^1000)
Crossrefs
Cf. A257830.
Programs
-
Mathematica
(* outputs terms with at most 100 digits *) sol[nd_] := Block[{z = Range[9 nd]/nd, x}, x = FromDigits /@ First /@ RealDigits[z, 10, nd]; x[[Select[Range@ Length@x, z[[#]] == Mean@ IntegerDigits@x[[#]] &]]]]; Union@ Flatten@Array[sol, 100]
Comments