This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257836 #4 May 12 2015 17:57:21 %S A257836 15,35,63,99,105,143,195,255,315,323,399,483,575,675,693,783,899,945, %T A257836 1023,1155,1287,1295,1443,1599,1763,1935,2115,2145,2303,2499,2703, %U A257836 2915,3135,3315,3363,3465,3599,3843,4095,4355,4623,4845,4899,5183,5475,5775,6083 %N A257836 Numbers which are the product of at least two consecutive odd numbers > 1. %H A257836 Reinhard Zumkeller, <a href="/A257836/b257836.txt">Table of n, a(n) for n = 1..10000</a> %e A257836 . | | ----- Factorizations into ... -------------- %e A257836 . n | a(n) | prime powers | consecutive odd numbers %e A257836 . ----+-------+--------------------+-------------------------- %e A257836 . 1 | 15 | 3 * 5 | 3 * 5 %e A257836 . 2 | 35 | 5 * 7 | 5 * 7 %e A257836 . 3 | 63 | 3^2 * 7 | 7 * 9 %e A257836 . 4 | 99 | 3^2 * 11 | 9 * 11 %e A257836 . 5 | 105 | 3 * 5 * 7 | 3 * 5 * 7 %e A257836 . 6 | 143 | 11 * 13 | 11 * 13 %e A257836 . 7 | 195 | 3 * 5 * 13 | 13 * 15 %e A257836 . 8 | 255 | 3 * 5 * 17 | 15 * 17 %e A257836 . 9 | 315 | 3^2 * 5 * 7 | 5 * 7 * 9 %e A257836 . 10 | 323 | 17 * 19 | 17 * 19 %e A257836 . 11 | 399 | 3 * 7 * 19 | 19 * 21 %e A257836 . 12 | 483 | 3 * 7 * 23 | 21 * 23 %e A257836 . 13 | 575 | 5^2 * 23 | 23 * 25 %e A257836 . 14 | 675 | 3^3 * 5^2 | 25 * 27 %e A257836 . 15 | 693 | 3^2 * 7 * 11 | 7 * 9 * 11 %e A257836 . 16 | 783 | 3^3 * 29 | 27 * 29 %e A257836 . 17 | 899 | 29 * 31 | 29 * 31 %e A257836 . 18 | 945 | 3^3 * 5 * 7 | 3 * 5 * 7 * 9 %e A257836 . 19 | 1023 | 3 * 11 * 31 | 31 * 33 %e A257836 . 20 | 1155 | 3 * 5 * 7 * 11 | 33 * 35 %e A257836 . 21 | 1287 | 3^2 * 11 * 13 | 9 * 11 * 13 %e A257836 . 22 | 1295 | 5 * 7 * 37 | 35 * 37 %e A257836 . 23 | 1443 | 3 * 13 * 37 | 37 * 39 %e A257836 . 24 | 1599 | 3 * 13 * 41 | 39 * 41 %e A257836 . 25 | 1763 | 41 * 43 | 41 * 43 %e A257836 . 26 | 1935 | 3^2 * 5 * 43 | 43 * 45 %e A257836 . 27 | 2115 | 3^2 * 5 * 47 | 45 * 47 %e A257836 . 28 | 2145 | 3 * 5 * 11 * 13 | 11 * 13 * 15 %e A257836 . 29 | 2303 | 7^2 * 47 | 47 * 49 %e A257836 . 30 | 2499 | 3 * 7^2 * 17 | 49 * 51 . %o A257836 (Haskell) %o A257836 import Data.Set (singleton, deleteFindMin, insert) %o A257836 a257836 n = a257836_list !! (n-1) %o A257836 a257836_list = f $ singleton (15, 3, 5) where %o A257836 f s = y : f (insert (w, u, v') $ insert (w `div` u, u + 2, v') s') %o A257836 where w = y * v'; v' = v + 2 %o A257836 ((y, u, v), s') = deleteFindMin s %Y A257836 Cf. A005408, A097889. %K A257836 nonn %O A257836 1,1 %A A257836 _Reinhard Zumkeller_, May 12 2015