cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257838 Main diagonal of iterated partial sums array of Fibonacci numbers (starting with the first partial sums).

This page as a plain text file.
%I A257838 #37 Apr 09 2017 02:58:29
%S A257838 0,1,4,16,63,247,967,3785,14820,58060,227612,892926,3505386,13770404,
%T A257838 54129602,212904952,837885495,3299264407,12997784803,51230474669,
%U A257838 202014314769,796928589755,3145066003589,12416625685891,49037912997003,193734379979677,765632076098287,3026670770970925,11968378998073935
%N A257838 Main diagonal of iterated partial sums array of Fibonacci numbers (starting with the first partial sums).
%C A257838 The array used here starts in row n=0 with the first partial sums of A000045. The array which starts with the Fibonacci numbers in row k=0 is shown in A136431. The diagonal of that array is given in A176085. - _Wolfdieter Lang_, Jun 03 2015
%H A257838 G. C. Greubel, <a href="/A257838/b257838.txt">Table of n, a(n) for n = 0..1000</a>
%F A257838 a(n) = F^{n+1}(n), n >= 0, with the k-th iterated partial sum F^{k} of the Fibonacci number A000045. - _Wolfdieter Lang_, Jun 03 2015
%F A257838 Conjecture: n*(n-3)*a(n) +2*(-4*n^2+13*n-6)*a(n-1) +(15*n^2-53*n+48)*a(n-2) +2*(2*n-3)*(n-2)*a(n-3)=0. - _R. J. Mathar_, Dec 10 2015
%F A257838 G.f.: -(4*x+sqrt(1-4*x)-1)/(8*x^2+sqrt(1-4*x)*(8*x-2)-2*x). - _Vladimir Kruchinin_, Oct 09 2016
%F A257838 a(n) = Sum_{k=0..n} binomial(2*n-k,n-k)*F(k), where F(k) = A000045(k). - _Vladimir Kruchinin_, Oct 09 2016
%F A257838 a(n) ~ 2^(2*n+1)/sqrt(Pi*n). - _Vaclav Kotesovec_, Oct 09 2016
%e A257838 This sequence is the main diagonal of the following array (see the comment and Example field of A136431):
%e A257838 0, 1, 2,  4,  7,  12, ...  A000071
%e A257838 0, 1, 3,  7, 14,  26, ...  A001924
%e A257838 0, 1, 4, 11, 25,  51, ...  A014162
%e A257838 0, 1, 5, 16, 41,  92, ...  A014166
%e A257838 0, 1, 6, 22, 63, 155, ...  A053739
%e A257838 0, 1, 7, 29, 92, 247, ...  A053295
%t A257838 Table[DifferenceRoot[Function[{a, n},{(2*n + 4*n^2)*a[n] + (2 + 7*n + 15*n^2)*a[1 + n] + (8 - 6*n - 8*n^2)*a[2 + n] + (-2 + n + n^2)*a[3 + n] == 0, a[1] == 0, a[2] == 1, a[3] == 4, a[4] == 16}]][n], {n, 30}]
%o A257838 (Maxima)
%o A257838 a(n):=sum(binomial(2*n-k,n-k)*fib(k),k,0,n); /* _Vladimir Kruchinin_, Oct 09 2016 */
%o A257838 (PARI) x='x+O('x^50); concat([0], Vec(-(4*x+sqrt(1-4*x)-1)/(8*x^2+sqrt(1-4*x)*(8*x-2)-2*x))) \\ _G. C. Greubel_, Apr 08 2017
%Y A257838 Cf. A000045, A000071, A001924, A014162, A014166, A136431, A176085.
%K A257838 nonn,easy
%O A257838 0,3
%A A257838 _Luciano Ancora_, May 10 2015
%E A257838 Name edited by _Wolfdieter Lang_, Jun 03 2015