cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257839 Smallest possible x such that 4/n = 1/x + 1/y + 1/z with 0 < x < y < z all integers, or 0 if there is no such solution. Corresponding y and z values are in A257840 and A257841.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 14, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 20, 19, 19, 20, 20, 20, 20, 21
Offset: 1

Views

Author

M. F. Hasler, May 16 2015

Keywords

Comments

Otherwise said, x-value of the lexicographically first solution (x,y,z) to the given equation.
See A073101 for more details about these sequences related to the Erdős-Straus conjecture.
This differs from A075245 starting with a(89)=23 vs A075245(89)=24, respective solutions being 1/23 + 1/690 + 1/61410 = 1/24 + 1/306 + 1/108936 = 4/89.

Crossrefs

Programs

  • PARI
    apply( {A257839(n, t)=for(x=n\4+1, 3*n\4, for(y=max(1\t=4/n-1/x, x)+1, ceil(2/t)-1, numerator(t-1/y)==1 && return(x)))}, [1..99]) \\ improved by M. F. Hasler, Jul 03 2022

Formula

Conjecture: a(n) = floor(n/4) + d with d = 1 for all n > 2 except some n = 24k + 1 (k = 2, 3, 7, 8, 10, 13, 15, 17, 18, 23, 25, 28, 30, 32, 33, 37, 40, 43, ...) where d = 2. - M. F. Hasler, Jul 03 2022