A257839 Smallest possible x such that 4/n = 1/x + 1/y + 1/z with 0 < x < y < z all integers, or 0 if there is no such solution. Corresponding y and z values are in A257840 and A257841.
0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 14, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 20, 19, 19, 20, 20, 20, 20, 21
Offset: 1
Keywords
Links
- M. F. Hasler, Table of n, a(n) for n = 1..1000
Programs
-
PARI
apply( {A257839(n, t)=for(x=n\4+1, 3*n\4, for(y=max(1\t=4/n-1/x, x)+1, ceil(2/t)-1, numerator(t-1/y)==1 && return(x)))}, [1..99]) \\ improved by M. F. Hasler, Jul 03 2022
Formula
Conjecture: a(n) = floor(n/4) + d with d = 1 for all n > 2 except some n = 24k + 1 (k = 2, 3, 7, 8, 10, 13, 15, 17, 18, 23, 25, 28, 30, 32, 33, 37, 40, 43, ...) where d = 2. - M. F. Hasler, Jul 03 2022
Comments