A257846 a(n) = floor(n/6) * (n mod 6).
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 0, 2, 4, 6, 8, 10, 0, 3, 6, 9, 12, 15, 0, 4, 8, 12, 16, 20, 0, 5, 10, 15, 20, 25, 0, 6, 12, 18, 24, 30, 0, 7, 14, 21, 28, 35, 0, 8, 16, 24, 32, 40, 0, 9, 18, 27, 36, 45, 0, 10, 20, 30, 40, 50, 0, 11, 22, 33, 44, 55, 0, 12, 24
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2,0,0,0,0,0,-1).
Programs
-
Mathematica
Table[Floor[n/6]*Mod[n, 6], {n, 120}] (* Michael De Vlieger, May 11 2015 *)
-
PARI
a(n,b=6)=(n=divrem(n,b))[1]*n[2]
-
PARI
concat([0, 0, 0, 0, 0, 0, 0], Vec(x^7*(5*x^4+4*x^3+3*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2) + O(x^100))) \\ Colin Barker, May 11 2015
Formula
a(n) = 2*a(n-6)-a(n-12). - Colin Barker, May 11 2015
G.f.: x^7*(5*x^4+4*x^3+3*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2). - Colin Barker, May 11 2015
Comments