This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257851 #47 Sep 17 2021 16:50:22 %S A257851 1,4,9,8,24,27,16,48,72,80,32,96,144,160,216,64,192,288,320,432,448, %T A257851 128,384,576,640,864,896,1296,256,768,1152,1280,1728,1792,2592,2816, %U A257851 512,1536,2304,2560,3456,3584,5184,5632,6400,1024,3072,4608,5120,6912,7168,10368,11264,12800,13312 %N A257851 Triangle read by rows: row n contains the first n+1 numbers m such that A046660(m) = n. %C A257851 At the suggestion of _Michel Marcus_'s remark in _Carlos Eduardo Olivieri_'s A261256. %H A257851 Reinhard Zumkeller, <a href="/A257851/b257851.txt">Rows n = 0..20 of triangle, flattened</a> %F A257851 T(n,0) = A151821(n+1); %F A257851 T(n,n-1) = A261256(n) for n > 0; %F A257851 T(n,n) = A264959(n). %F A257851 T(0,0) = A005117(1); %F A257851 T(1,k) = A060687(k+1), k = 0..1; %F A257851 T(2,k) = A195086(k+1), k = 0..2; %F A257851 T(3,k) = A195087(k+1), k = 0..3; %F A257851 T(4,k) = A195088(k+1), k = 0..4; %F A257851 T(5,k) = A195089(k+1), k = 0..5; %F A257851 T(6,k) = A195090(k+1), k = 0..6; %F A257851 T(7,k) = A195091(k+1), k = 0..7; %F A257851 T(8,k) = A195092(k+1), k = 0..8; %F A257851 T(9,k) = A195093(k+1), k = 0..9; %F A257851 T(10,k) = A195069(k+1), k = 0..10. %e A257851 0: 1 %e A257851 1: 4 9 %e A257851 2: 8 24 27 %e A257851 3: 16 48 72 80 %e A257851 4: 32 96 144 160 216 %e A257851 5: 64 192 288 320 432 448 %e A257851 6: 128 384 576 640 864 896 1296 %e A257851 7: 256 768 1152 1280 1728 1792 2592 2816 %e A257851 8: 512 1536 2304 2560 3456 3584 5184 5632 6400 %e A257851 -- ------------------------------------------------------------ %e A257851 0: 1 %e A257851 1: 2^2 3^2 %e A257851 2: 2^3 2^3*3 3^3 %e A257851 3: 2^4 2^4*3 2^3*3^2 2^4*5 %e A257851 4: 2^5 2^5*3 2^4*3^2 2^5*5 2^3*3^3 %e A257851 5: 2^6 2^6*3 2^5*3^2 2^6*5 2^4*3^3 2^6*7 %e A257851 6: 2^7 2^7*3 2^6*3^2 2^7*5 2^5*3^3 2^7*7 2^4*3^4 %e A257851 7: 2^8 2^8*3 2^7*3^2 2^8*5 2^6*3^3 2^8*7 2^5*3^4 2^8*11 %e A257851 8: 2^9 2^9*3 2^8*3^2 2^9*5 2^7*3^3 2^9*7 2^6*3^4 2^9*11 2^8*5^2 %t A257851 T[n_] := Reap[For[m = 1; k = 1, k <= n+1, If[PrimeOmega[m] - PrimeNu[m] == n, Sow[m]; k++]; m++]][[2, 1]]; %t A257851 Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Sep 17 2021 *) %o A257851 (Haskell) %o A257851 a257851 n k = a257851_tabl !! n !! k %o A257851 a257851_row n = a257851_tabl !! n %o A257851 a257851_tabl = map %o A257851 (\x -> take (x + 1) $ filter ((== x) . a046660) [1..]) [0..] %Y A257851 Cf. A046660, A151821, A261256. %Y A257851 Cf. A005117, A060687, A195086, A195087, A195088, A195089, A195090, A195091, A195092, A195093, A195069. %K A257851 nonn,tabl %O A257851 0,2 %A A257851 _Reinhard Zumkeller_, Nov 29 2015