cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257857 Sequentially filled binary triangle rotated 180 degrees and then superimposed and added to the original triangle.

This page as a plain text file.
%I A257857 #38 Aug 05 2015 08:42:09
%S A257857 2,1,1,0,2,0,1,1,1,1,2,0,2,0,2,1,1,1,1,1,1,0,2,0,2,0,2,0,1,1,1,1,1,1,
%T A257857 1,1,2,0,2,0,2,0,2,0,2,1,1,1,1,1,1,1,1,1,1,0,2,0,2,0,2,0,2,0,2,0,1,1,
%U A257857 1,1,1,1,1,1,1,1,1,1,2,0,2,0,2
%N A257857 Sequentially filled binary triangle rotated 180 degrees and then superimposed and added to the original triangle.
%C A257857 The integers in the LINKS illustration hang like ornaments on a tree.
%H A257857 Craig Knecht, <a href="/A257857/a257857.jpg">binary triangle rotated 180 degrees and superimposed on itself</a>
%H A257857 Craig Knecht, <a href="/A257857/a257857_1.jpg">Color coded contributions of the individual triangles</a>
%F A257857 T(n,k)=1 if n even, 1<=k<=n.
%F A257857 T(n,k)=2 if n odd and (n+1)/2+k even, 1<=k<=n.
%F A257857 T(n,k)=0 if n odd and (n+1)/2+k odd, 1<=k<=n.
%e A257857 Triangle T(n,k) begins:       Row sums
%e A257857 2;                                2
%e A257857 1,  1;                            2
%e A257857 0,  2,  0;                        2
%e A257857 1,  1,  1,  1;                    4
%e A257857 2,  0,  2,  0,  2;                6
%e A257857 1,  1,  1,  1,  1,  1;            6
%e A257857 0,  2,  0,  2,  0,  2,  0;        6
%e A257857 1,  1,  1,  1,  1,  1,  1,  1;    8
%p A257857 A257857 := proc(n,k)
%p A257857     if type(n,'even') then
%p A257857         1 ;
%p A257857     elif type((n+1)/2+k,'even') then
%p A257857         2 ;
%p A257857     else
%p A257857         0;
%p A257857     end if;
%p A257857 end proc:
%Y A257857 For row sums for the three other variations of this build process, see A186421, A201629, A240828.
%K A257857 nonn,tabl,easy
%O A257857 1,1
%A A257857 _Craig Knecht_, Jul 12 2015