This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257860 #19 May 22 2025 10:21:42 %S A257860 1,89,132,264,518,739,2407,6579,8200,8201,8202,8203,8204,8205,8206, %T A257860 8207,8208,8209,32780,32781,32782,32783,32784,32785,32786,32787,32788, %U A257860 32789,59060,59061,59062,59063,59064,59065,59066,59067,59068,59069,78145,524300,524301,524302,524303,524304,524305,524306,524307,524308,524309,531459,823567,2097178 %N A257860 Numbers n such that a digit of n to the power k plus the sum of the other digits of n equals n, where k is a positive integer. %C A257860 There are numbers that come in groups of 10, like 8200, 32780 and 524300. But there are also a few stand-alone numbers. Like 531459 (=5+3+1+4+5+9^6). %C A257860 It is easy to generate large terms in the sequence, for example, 9^104+409 and 9^1047+4561 are the smallest terms with 100 and 1000 digits, respectively. - _Giovanni Resta_, May 12 2015 %e A257860 89 is in the sequence because 89 = 8+9^2. %e A257860 2407 is in the sequence because 2407 = 2+4+0+7^4. %e A257860 8202 is in the sequence because 8202 = 8+ 2^13 +0+2, also 8202 = 8+2+0+2^13. %o A257860 (Python) %o A257860 def sod(n): %o A257860 kk = 0 %o A257860 while n > 0: %o A257860 kk= kk+(n%10) %o A257860 n =int(n//10) %o A257860 return kk %o A257860 for i in range (1,10**7): %o A257860 for j in range(1,len(str(i))+1): %o A257860 k=(i//(10**(j-1)))%10 %o A257860 for m in range (2,30): %o A257860 if i==sod(i)+k**m-k: %o A257860 print (i) %o A257860 (Haskell) %o A257860 import Data.List (nub); import Data.List.Ordered (member) %o A257860 a257860 n = a257860_list !! (n-1) %o A257860 a257860_list = 1 : filter f [1..] where %o A257860 f x = any (\d -> member (x - q + d) $ ps d) $ filter (> 1) $ nub ds %o A257860 where q = sum ds; ds = (map (read . return) . show) x %o A257860 ps x = iterate (* x) (x ^ 2) %o A257860 -- _Reinhard Zumkeller_, May 12 2015 %Y A257860 Cf. A061209, A130680, A257766, A257768, A257784, %Y A257860 Cf. A007953. %K A257860 nonn,base %O A257860 1,2 %A A257860 _Pieter Post_, May 11 2015 %E A257860 One more term and some missing data added by _Reinhard Zumkeller_, May 12 2015