This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257869 #19 May 06 2021 11:04:31 %S A257869 6,8,136,138,144,154,156,160,164,168,170,180,186,188,208,210,214,218, %T A257869 222,224,232,236,248,258,260,266,288,294,296,312,314,320,3406,3412, %U A257869 3414,3430,3432,3438,3484,3486,3492,3510,3568,3574,3576,3592,3594,3600,3622 %N A257869 Nonnegative integers with an equal number of occurrences of all trits in balanced ternary representation. %H A257869 Alois P. Heinz, <a href="/A257869/b257869.txt">Table of n, a(n) for n = 1..10000</a> %H A257869 Wikipedia, <a href="https://en.wikipedia.org/wiki/Balanced_ternary">Balanced ternary</a> %e A257869 6 = 1L0_bal3, 8 = 10L_bal3, 136 = 1LL001_bal3, 138 = 1LL010_bal3, 144 = 1LL100_bal3, where L represents (-1). %p A257869 p:= proc(n) local d, m, r; m:=n; r:=0; %p A257869 while m>0 do %p A257869 d:= irem(m, 3, 'm'); %p A257869 if d=2 then m:=m+1 fi; %p A257869 r:= r+x^d %p A257869 od; %p A257869 simplify(r/(1+x+x^2))::integer %p A257869 end: %p A257869 a:= proc(n) option remember; local k; %p A257869 for k from 1+`if`(n=1, 0, a(n-1)) by 1 %p A257869 while not p(k) do od; k %p A257869 end: %p A257869 seq(a(n), n=1..70); %o A257869 (Python) %o A257869 def a(n): %o A257869 s=[] %o A257869 x=0 %o A257869 while n>0: %o A257869 x=n%3 %o A257869 n//=3 %o A257869 if x==2: %o A257869 x=-1 %o A257869 n+=1 %o A257869 s.append(x) %o A257869 return s %o A257869 print([n for n in range(1, 5001) if a(n).count(1)==a(n).count(-1) and a(n).count(-1)==a(n).count(0)]) # _Indranil Ghosh_, Jun 07 2017 %Y A257869 Cf. A117967, A140267, A257867, A257868, A258410. %Y A257869 Subsequence of A174658. %K A257869 nonn,base %O A257869 1,1 %A A257869 _Alois P. Heinz_, May 11 2015