This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257877 #9 May 14 2015 12:52:23 %S A257877 0,1,3,2,6,4,9,5,11,8,15,10,18,12,21,14,24,16,7,19,30,20,33,22,36,23, %T A257877 38,26,42,28,13,31,48,32,51,34,54,35,17,39,60,40,63,41,65,44,69,46,72, %U A257877 47,74,50,78,52,25,55,27,56,87,58,90,59,29,62,96,64,99 %N A257877 Sequence (a(n)) generated by Rule 1 (in Comments) with a(1) = 0 and d(1) = 3. %C A257877 Rule 1 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1). %C A257877 Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the greatest such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2. %C A257877 Step 2: Let h be the least positive integer not in D(k) such that a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1. %C A257877 Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0. %C A257877 See A257705 for a guide to related sequences. %H A257877 Clark Kimberling, <a href="/A257877/b257877.txt">Table of n, a(n) for n = 1..1000</a> %F A257877 a(k+1) - a(k) = d(k+1) for k >= 1. %e A257877 a(1) = 0, d(1) = 3; %e A257877 a(2) = 1, d(2) = 1; %e A257877 a(3) = 3, d(3) = 2; %e A257877 a(4) = 2, d(4) = -1. %t A257877 a[1] = 0; d[1] = 3; k = 1; z = 10000; zz = 120; %t A257877 A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}]; %t A257877 c[k_] := Complement[Range[-z, z], diff[k]]; %t A257877 T[k_] := -a[k] + Complement[Range[z], A[k]]; %t A257877 s[k_] := Intersection[Range[-a[k], -1], c[k], T[k]]; %t A257877 Table[If[Length[s[k]] == 0, {h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {h = Max[s[k]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}], {i, 1, zz}]; %t A257877 u = Table[a[k], {k, 1, zz}] (* A257877 *) %t A257877 Table[d[k], {k, 1, zz}] (* A257915 *) %Y A257877 Cf. A131388, A257915, A257705, A081145, A257883, A175498. %K A257877 nonn,easy %O A257877 1,3 %A A257877 _Clark Kimberling_, May 12 2015