cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257878 Sequence (a(n)) generated by Rule 1 (in Comments) with a(1) = 1 and d(1) = 1.

Original entry on oeis.org

1, 3, 2, 5, 9, 7, 4, 10, 6, 11, 18, 13, 21, 15, 8, 17, 27, 19, 30, 20, 32, 23, 12, 25, 39, 26, 14, 29, 45, 31, 16, 33, 51, 35, 54, 37, 57, 38, 59, 41, 63, 43, 22, 46, 24, 47, 72, 49, 75, 50, 77, 53, 81, 55, 28, 58, 87, 56, 88, 60, 91, 62, 95, 65, 99, 67, 34
Offset: 1

Views

Author

Clark Kimberling, May 12 2015

Keywords

Comments

Rule 1 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1).
Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the greatest such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2.
Step 2: Let h be the least positive integer not in D(k) such that a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257705 for a guide to related sequences.
Considering the first 1000 elements of this sequence and A257705 it appears that this is the same as A257705 apart from an index shift. - R. J. Mathar, May 14 2015

Examples

			a(1) = 1, d(1) = 1;
a(2) = 3, d(2) = 2;
a(3) = 2, d(3) = -1;
a(4) = 5, d(4) = -3.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; d[1] = 1; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]];
    s[k_] := Intersection[Range[-a[k], -1], c[k], T[k]];
    Table[If[Length[s[k]] == 0, {h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {h = Max[s[k]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}], {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257878 *)
    Table[d[k], {k, 1, zz}]      (* A131389 essentially *)

Formula

a(k+1) - a(k) = d(k+1) for k >= 1.