This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257885 #9 Jun 09 2015 14:21:52 %S A257885 0,1,4,2,6,3,8,7,13,5,12,20,9,18,11,21,15,10,22,33,14,27,17,31,16,32, %T A257885 19,34,25,42,24,43,23,41,29,49,26,47,30,52,28,51,35,59,37,62,36,63,38, %U A257885 64,50,46,74,39,68,40,70,101,44,76,45,78,48,82,53,88,54 %N A257885 Sequence (a(n)) generated by Algorithm (in Comments) with a(1) = 0 and d(1) = 2. %C A257885 Algorithm: For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1). Let h be the least integer > -a(k) such that h is not in D(k) and a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and repeat inductively. %C A257885 Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0. %C A257885 See A257883 for a guide to related sequences. %H A257885 Clark Kimberling, <a href="/A257885/b257885.txt">Table of n, a(n) for n = 1..1000</a> %F A257885 a(k+1) - a(k) = d(k+1) for k >= 1. %e A257885 a(1) = 0, d(1) = 2; %e A257885 a(2) = 1, d(2) = 1; %e A257885 a(3) = 4, d(3) = 3; %e A257885 a(4) = 2, d(4) = -2. %t A257885 a[1] = 0; d[1] = 2; k = 1; z = 10000; zz = 120; %t A257885 A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}]; %t A257885 c[k_] := Complement[Range[-z, z], diff[k]]; %t A257885 T[k_] := -a[k] + Complement[Range[z], A[k]] %t A257885 Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, %t A257885 d[k + 1] = h, k = k + 1}, {i, 1, zz}]; %t A257885 u = Table[a[k], {k, 1, zz}] (* A257885 *) %t A257885 Table[d[k], {k, 1, zz}] (* A257902 *) %Y A257885 Cf. A257902, A257883, A257705. %K A257885 nonn,easy %O A257885 1,3 %A A257885 _Clark Kimberling_, May 13 2015