This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257888 #41 Nov 06 2019 01:12:43 %S A257888 4,36,224,1200,5940,28028,128128,572832,2519400,10943240,47070144, %T A257888 200880160,851809140,3592795500,15085939200,63102895680,263083395960, %U A257888 1093683448440,4535210472000,18764563053600,77485731403080,319402222692696,1314511549519104 %N A257888 Number of nonintersecting (or self-avoiding) rook paths of length 2n+2 joining opposite corners of an n X n grid. %H A257888 Andrew Howroyd, <a href="/A257888/b257888.txt">Table of n, a(n) for n = 3..200</a> %F A257888 a(n) = 2*(n-1)*binomial(2*n-2, n-3). %F A257888 a(n) = A114593(n^2). %F A257888 a(n) = 4*A002055(n+3). - _Alois P. Heinz_, May 21 2015 %F A257888 From _Benedict W. J. Irwin_, Jul 13 2016: (Start) %F A257888 G.f.: 2*(s-1+x*(7-5*s+2*x*(2*s-6+x)))/(s^3x^2), where s=sqrt(1-4*x). %F A257888 E.g.f: 2*E^(2*x)*x*(BesselI(1,2*x)+2*BesselI(2,2*x)+BesselI(3,2*x)). %F A257888 (End) %t A257888 a[n_] := 2 Sum[Sum[ %t A257888 Binomial[j + k, k]*Binomial[2 n - k - j - 1, n - k + 1], {k, %t A257888 n}], {j, 0, n - 2}] %t A257888 CoefficientList[Series[(2(-1+Sqrt[1-4x]+x(7-5Sqrt[1-4x] +2x(-6+2Sqrt[ 1-4x] +x))))/ ((1-4x)^(3/2)x^2), {x, 0, 20}],x] (* _Benedict W. J. Irwin_, Jul 13 2016 *) %o A257888 (PARI) a(n) = 2*n*binomial(2*n,n-2) \\ _Charles R Greathouse IV_, May 21 2015 %Y A257888 Cf. A002055, A114593. %K A257888 nonn,walk %O A257888 3,1 %A A257888 _Theodore M. Mishura_, May 12 2015 %E A257888 Terms a(22) and beyond from _Andrew Howroyd_, Nov 05 2019