cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257894 Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (numerators).

This page as a plain text file.
%I A257894 #13 Nov 12 2023 04:02:37
%S A257894 1,1,1,1,3,1,1,11,7,1,1,25,85,15,1,1,137,415,575,31,1,1,49,12019,5845,
%T A257894 3661,63,1,1,363,13489,874853,76111,22631,127,1,1,761,726301,336581,
%U A257894 58067611,952525,137845,255,1,1,7129,3144919,129973303,68165041
%N A257894 Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (numerators).
%H A257894 Zhi-Dong Bai, Chern-Ching Chao, Hsien-Kuei Hwang and Wen-Qi Liang, <a href="http://projecteuclid.org/download/pdf_1/euclid.aoap/1028903455">On the variance of the number of maxima in random vectors and its applications</a>, The Annals of Applied Probability 1998, Vol. 8, No. 3, 886-895.
%H A257894 O. E. Barndorff-Nielsen and M. Sobel, <a href="http://www.mathnet.ru/links/2d44785a77c46910741a6ce707ad4c3b/tvp624.pdf">On the distribution of the number of admissible points in a vector random sample</a>, Theory Probab. Appl. 11, 249-269.
%F A257894 T(n,k) = Sum_{j=1..n} (-1)^(j-1)*j^(1-k)*C(n,j).
%e A257894 Array of fractions begins:
%e A257894 1,      1,          1,             1,                 1,                    1, ...
%e A257894 1,    3/2,        7/4,          15/8,             31/16,                63/32, ...
%e A257894 1,   11/6,      85/36,       575/216,         3661/1296,           22631/7776, ...
%e A257894 1,  25/12,    415/144,     5845/1728,       76111/20736,        952525/248832, ...
%e A257894 1, 137/60, 12019/3600, 874853/216000, 58067611/12960000, 3673451957/777600000, ...
%e A257894 1,  49/20, 13489/3600,  336581/72000, 68165041/12960000,   483900263/86400000, ...
%e A257894 ...
%e A257894 Row 2 (numerators) is A000225 (Mersenne numbers 2^k-1),
%e A257894 Row 3 is A001240 (Differences of reciprocals of unity),
%e A257894 Row 4 is A028037,
%e A257894 Row 5 is A103878,
%e A257894 Row 6 is not in the OEIS.
%e A257894 Column 2 (numerators) is A001008 (Wolstenholme numbers: numerator of harmonic number),
%e A257894 Column 3 is A027459,
%e A257894 Column 4 is A027462,
%e A257894 Column 5 is A072913,
%e A257894 Column 6 is not in the OEIS.
%t A257894 T[n_, k_] := Sum[(-1)^(j - 1)*j^(1 - k)*Binomial[n, j], {j, 1, n}]; Table[T[n - k + 1, k] // Numerator, {n, 1, 12}, {k, 1, n}] // Flatten
%Y A257894 Cf. A257895 (denominators).
%K A257894 nonn,frac,tabl
%O A257894 1,5
%A A257894 _Jean-François Alcover_, May 12 2015