This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257894 #13 Nov 12 2023 04:02:37 %S A257894 1,1,1,1,3,1,1,11,7,1,1,25,85,15,1,1,137,415,575,31,1,1,49,12019,5845, %T A257894 3661,63,1,1,363,13489,874853,76111,22631,127,1,1,761,726301,336581, %U A257894 58067611,952525,137845,255,1,1,7129,3144919,129973303,68165041 %N A257894 Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (numerators). %H A257894 Zhi-Dong Bai, Chern-Ching Chao, Hsien-Kuei Hwang and Wen-Qi Liang, <a href="http://projecteuclid.org/download/pdf_1/euclid.aoap/1028903455">On the variance of the number of maxima in random vectors and its applications</a>, The Annals of Applied Probability 1998, Vol. 8, No. 3, 886-895. %H A257894 O. E. Barndorff-Nielsen and M. Sobel, <a href="http://www.mathnet.ru/links/2d44785a77c46910741a6ce707ad4c3b/tvp624.pdf">On the distribution of the number of admissible points in a vector random sample</a>, Theory Probab. Appl. 11, 249-269. %F A257894 T(n,k) = Sum_{j=1..n} (-1)^(j-1)*j^(1-k)*C(n,j). %e A257894 Array of fractions begins: %e A257894 1, 1, 1, 1, 1, 1, ... %e A257894 1, 3/2, 7/4, 15/8, 31/16, 63/32, ... %e A257894 1, 11/6, 85/36, 575/216, 3661/1296, 22631/7776, ... %e A257894 1, 25/12, 415/144, 5845/1728, 76111/20736, 952525/248832, ... %e A257894 1, 137/60, 12019/3600, 874853/216000, 58067611/12960000, 3673451957/777600000, ... %e A257894 1, 49/20, 13489/3600, 336581/72000, 68165041/12960000, 483900263/86400000, ... %e A257894 ... %e A257894 Row 2 (numerators) is A000225 (Mersenne numbers 2^k-1), %e A257894 Row 3 is A001240 (Differences of reciprocals of unity), %e A257894 Row 4 is A028037, %e A257894 Row 5 is A103878, %e A257894 Row 6 is not in the OEIS. %e A257894 Column 2 (numerators) is A001008 (Wolstenholme numbers: numerator of harmonic number), %e A257894 Column 3 is A027459, %e A257894 Column 4 is A027462, %e A257894 Column 5 is A072913, %e A257894 Column 6 is not in the OEIS. %t A257894 T[n_, k_] := Sum[(-1)^(j - 1)*j^(1 - k)*Binomial[n, j], {j, 1, n}]; Table[T[n - k + 1, k] // Numerator, {n, 1, 12}, {k, 1, n}] // Flatten %Y A257894 Cf. A257895 (denominators). %K A257894 nonn,frac,tabl %O A257894 1,5 %A A257894 _Jean-François Alcover_, May 12 2015