This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257895 #12 Mar 13 2018 04:39:38 %S A257895 1,1,1,1,2,1,1,6,4,1,1,12,36,8,1,1,60,144,216,16,1,1,20,3600,1728, %T A257895 1296,32,1,1,140,3600,216000,20736,7776,64,1,1,280,176400,72000, %U A257895 12960000,248832,46656,128,1,1,2520,705600,24696000,12960000,777600000 %N A257895 Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (denominators). %H A257895 Zhi-Dong Bai, Chern-Ching Chao, Hsien-Kuei Hwang and Wen-Qi Liang, <a href="https://doi.org/10.1214/aoap/1028903455">On the variance of the number of maxima in random vectors and its applications</a>, The Annals of Applied Probability 1998, Vol. 8, No. 3, 886-895. %H A257895 O. E. Barndorff-Nielsen and M. Sobel, <a href="http://www.mathnet.ru/links/2d44785a77c46910741a6ce707ad4c3b/tvp624.pdf">On the distribution of the number of admissible points in a vector random sample.</a> Theory Probab. Appl. 11 249-269. %F A257895 T(n,k) = Sum_{j=1..n} (-1)^(j-1)*j^(1-k)*binomial(n,j). %e A257895 Array of fractions begins: %e A257895 1, 1, 1, 1, 1, 1, ... %e A257895 1, 3/2, 7/4, 15/8, 31/16, 63/32, ... %e A257895 1, 11/6, 85/36, 575/216, 3661/1296, 22631/7776, ... %e A257895 1, 25/12, 415/144, 5845/1728, 76111/20736, 952525/248832, ... %e A257895 1, 137/60, 12019/3600, 874853/216000, 58067611/12960000, 3673451957/777600000, ... %e A257895 1, 49/20, 13489/3600, 336581/72000, 68165041/12960000, 483900263/86400000, ... %e A257895 ... %e A257895 Row 2 (denominators) is A000079 (powers of 2), %e A257895 Row 3 is A000400 (powers of 6), %e A257895 Row 4 is A001021 (powers of 12), %e A257895 Row 5 is A159991, %e A257895 Row 6 is not in the OEIS. %e A257895 Column 2 (denominators) is A002805 (denominators of harmonic numbers), %e A257895 Column 3 is A051418 (lcm(1..n)^2), %e A257895 Column 4 is not in the OEIS. %t A257895 T[n_, k_] := Sum[(-1)^(j - 1)*j^(1 - k)*Binomial[n, j], {j, 1, n}]; Table[T[n - k + 1, k] // Denominator, {n, 1, 12}, {k, 1, n}] // Flatten %Y A257895 Cf. A257894 (numerators). %K A257895 nonn,frac,tabl %O A257895 1,5 %A A257895 _Jean-François Alcover_, May 12 2015