cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257895 Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (denominators).

This page as a plain text file.
%I A257895 #12 Mar 13 2018 04:39:38
%S A257895 1,1,1,1,2,1,1,6,4,1,1,12,36,8,1,1,60,144,216,16,1,1,20,3600,1728,
%T A257895 1296,32,1,1,140,3600,216000,20736,7776,64,1,1,280,176400,72000,
%U A257895 12960000,248832,46656,128,1,1,2520,705600,24696000,12960000,777600000
%N A257895 Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (denominators).
%H A257895 Zhi-Dong Bai, Chern-Ching Chao, Hsien-Kuei Hwang and Wen-Qi Liang, <a href="https://doi.org/10.1214/aoap/1028903455">On the variance of the number of maxima in random vectors and its applications</a>, The Annals of Applied Probability 1998, Vol. 8, No. 3, 886-895.
%H A257895 O. E. Barndorff-Nielsen and M. Sobel, <a href="http://www.mathnet.ru/links/2d44785a77c46910741a6ce707ad4c3b/tvp624.pdf">On the distribution of the number of admissible points in a vector random sample.</a> Theory Probab. Appl. 11 249-269.
%F A257895 T(n,k) = Sum_{j=1..n} (-1)^(j-1)*j^(1-k)*binomial(n,j).
%e A257895 Array of fractions begins:
%e A257895 1,      1,          1,             1,                 1,                    1, ...
%e A257895 1,    3/2,        7/4,          15/8,             31/16,                63/32, ...
%e A257895 1,   11/6,      85/36,       575/216,         3661/1296,           22631/7776, ...
%e A257895 1,  25/12,    415/144,     5845/1728,       76111/20736,        952525/248832, ...
%e A257895 1, 137/60, 12019/3600, 874853/216000, 58067611/12960000, 3673451957/777600000, ...
%e A257895 1,  49/20, 13489/3600,  336581/72000, 68165041/12960000,   483900263/86400000, ...
%e A257895 ...
%e A257895 Row 2 (denominators) is A000079 (powers of 2),
%e A257895 Row 3 is A000400 (powers of 6),
%e A257895 Row 4 is A001021 (powers of 12),
%e A257895 Row 5 is A159991,
%e A257895 Row 6 is not in the OEIS.
%e A257895 Column 2 (denominators) is A002805 (denominators of harmonic numbers),
%e A257895 Column 3 is A051418 (lcm(1..n)^2),
%e A257895 Column 4 is not in the OEIS.
%t A257895 T[n_, k_] := Sum[(-1)^(j - 1)*j^(1 - k)*Binomial[n, j], {j, 1, n}]; Table[T[n - k + 1, k] // Denominator, {n, 1, 12}, {k, 1, n}] // Flatten
%Y A257895 Cf. A257894 (numerators).
%K A257895 nonn,frac,tabl
%O A257895 1,5
%A A257895 _Jean-François Alcover_, May 12 2015