This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257899 #13 May 22 2025 10:21:42 %S A257899 7246198035,3410256897,5361708249,5902183746,6820513794,8145396207, %T A257899 8269753401,9145036728,9537240186,1257389406,1359426078,4379605281, %U A257899 1742063598,6185973240,2081654397,2095471863,6472951380,2170936485,2304859617,2415930786,2419650873 %N A257899 Pandigital numbers reordered so that the numbers A050278(n)/3^k, where 3^k||A050278(n), are in nondecreasing order. %C A257899 If two such numbers A050278(n_1)/3^k_1 and A050278(n_2)/3^k_2 are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). %C A257899 There are 5985 such pairs. %H A257899 Chai Wah Wu, <a href="/A257899/b257899.txt">Table of n, a(n) for n = 1..1000</a> %F A257899 min(A050278(n)/3^k) = 7246198035/3^15 = 505 %o A257899 (Python) %o A257899 from itertools import permutations %o A257899 l = [] %o A257899 for d in permutations('0123456789', 10): %o A257899 if d[0] != '0': %o A257899 d2 = int(''.join(d)) %o A257899 d = d2 %o A257899 r = d2 % 3 %o A257899 while not r: %o A257899 d2, r = divmod(d2, 3) %o A257899 l.append((d2,d)) %o A257899 l.sort() %o A257899 A257899_list = [b for a,b in l] # _Chai Wah Wu_, May 24 2015 %Y A257899 Cf. A050278, A257893. %K A257899 nonn,base,fini %O A257899 1,1 %A A257899 _Vladimir Shevelev_ and _Peter J. C. Moses_, May 12 2015