This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257901 #12 May 22 2025 10:21:42 %S A257901 1304296875,1342968750,1437890625,1824609375,9123046875,1923046875, %T A257901 3104296875,3142968750,3649218750,4137890625,4862109375,1034296875, %U A257901 1269843750,6349218750,1284609375,1293046875,1347890625,1432968750,8124609375,1629843750,8462109375 %N A257901 Pandigital numbers reordered so that the numbers A050278(n)/5^k, where 5^k||A050278(n), are in nondecreasing order. %C A257901 If two such numbers A050278(n_1)/5^k_1 and A050278(n_2)/5^k_2 are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). For example, a(4)/5^8=a(5)/5^9=4671. %C A257901 There are 46080 such pairs. %H A257901 Chai Wah Wu, <a href="/A257901/b257901.txt">Table of n, a(n) for n = 1..1000</a> %F A257901 min(A050278(n)/5^k) = 1304296875/5^8 = 3339. %o A257901 (Python) %o A257901 from itertools import permutations %o A257901 l = [] %o A257901 for d in permutations('0123456789', 10): %o A257901 if d[0] != '0': %o A257901 d2 = int(''.join(d)) %o A257901 d = d2 %o A257901 r = d2 % 5 %o A257901 while not r: %o A257901 d2, r = divmod(d2,5) %o A257901 l.append((d2,d)) %o A257901 l.sort() %o A257901 A257901_list = [b for a,b in l] # _Chai Wah Wu_, May 24 2015 %Y A257901 Cf. A050278, A257893, A257899. %K A257901 nonn,base,fini %O A257901 1,1 %A A257901 _Vladimir Shevelev_ and _Peter J. C. Moses_, May 12 2015