A257904 Sequence (d(n)) generated by Algorithm (in Comments) with a(1) = 0 and d(1) = 2.
3, 1, 2, -1, 4, -2, 5, -4, 6, -3, 7, -8, 9, -6, 8, -5, 10, -11, 12, -10, 11, 13, -21, 14, -12, 15, -14, 16, -15, 18, -17, 19, -13, 17, -19, 20, -16, 21, -24, 22, -20, 23, -9, 24, -35, 25, -22, 26, -28, 27, -23, 28, -25, 29, -27, 30, -18, -7, 31, -34, 32, -26
Offset: 1
Examples
a(1) = 0, d(1) = 2; a(2) = 1, d(2) = 1; a(3) = 4, d(3) = 3; a(4) = 2, d(4) = -2.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1] = 0; d[1] = 3; k = 1; z = 10000; zz = 120; A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}]; c[k_] := Complement[Range[-z, z], diff[k]]; T[k_] := -a[k] + Complement[Range[z], A[k]] Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {i, 1, zz}]; u = Table[a[k], {k, 1, zz}] (* A257903 *) Table[d[k], {k, 1, zz}] (* A257904 *)
Formula
a(k+1) - a(k) = d(k+1) for k >= 1.
Comments