This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257908 #9 Jun 05 2015 03:41:44 %S A257908 0,1,4,2,6,3,8,7,15,5,11,23,9,19,10,21,13,27,12,25,14,29,16,33,17,35, %T A257908 18,37,30,24,20,41,22,45,40,28,57,26,53,31,63,34,69,32,65,38,77,36,73, %U A257908 39,79,43,87,42,85,46,93,44,89,47,95,48,97,49,99,55,111 %N A257908 Sequence (a(n)) generated by Rule 3 (in Comments) with a(1) = 0 and d(1) = 2. %C A257908 Rule 3 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1). %C A257908 Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the least such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2. %C A257908 Step 2: Let h be the least positive integer not in D(k) such that a(k) - h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1. %C A257908 See A257905 for a guide to related sequences and conjectures. %H A257908 Clark Kimberling, <a href="/A257908/b257908.txt">Table of n, a(n) for n = 1..1000</a> %e A257908 a(1) = 0, d(1) = 2; %e A257908 a(2) = 1, d(2) = 1; %e A257908 a(3) = 4, d(3) = 3; %e A257908 a(4) = 2, d(4) = -2. %t A257908 {a, f} = {{0}, {2}}; Do[tmp = {#, # - Last[a]} &[Min[Complement[#, Intersection[a, #]]&[Last[a] + Complement[#, Intersection[f, #]] &[Range[2 - Last[a], -1]]]]]; %t A257908 If[! IntegerQ[tmp[[1]]], tmp = {Last[a] + #, #} &[NestWhile[# + 1 &, 1, ! (! MemberQ[f, #] && ! MemberQ[a, Last[a] - #]) &]]]; AppendTo[a, tmp[[1]]]; AppendTo[f, tmp[[2]]], {120}]; {a, f} (* _Peter J. C. Moses_, May 14 2015 *) %Y A257908 Cf. A257905, A257909. %K A257908 nonn,easy %O A257908 1,3 %A A257908 _Clark Kimberling_, May 16 2015