cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A257883 Sequence (a(n)) generated by Algorithm (in Comments) with a(1) = 0 and d(1) = 0.

Original entry on oeis.org

0, 1, 3, 2, 5, 9, 4, 10, 6, 11, 8, 15, 7, 16, 14, 22, 12, 23, 17, 27, 13, 25, 18, 31, 19, 33, 20, 35, 24, 40, 21, 38, 29, 47, 26, 45, 28, 48, 30, 51, 36, 58, 32, 55, 39, 63, 34, 59, 37, 64, 41, 67, 42, 70, 43, 72, 44, 74, 50, 81, 46, 78, 111, 49, 83, 52, 87
Offset: 1

Views

Author

Clark Kimberling, May 13 2015

Keywords

Comments

Algorithm: For k >= 1, let A(k) = {a(1), ..., a(k)} and D(k) = {d(1), ..., d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1). Let h be the least integer > -a(k) such that h is not in D(k) and a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and repeat inductively.
Conjecture: if a(1) is a nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
Guide to related sequences:
a(1) d(1) (a(n)) (d(n))
0 0 A257883 A175499 except for initial terms
1 0 A175498 A175499 except for first term
2 1 A257910 A257909 except for initial terms

Examples

			a(1) = 0, d(1) = 0;
a(2) = 1, d(2) = 1;
a(3) = 3, d(3) = 2;
a(4) = 2, d(4) = -1.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; d[1] = 0; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]]
    Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h,
       d[k + 1] = h, k = k + 1}, {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257883, = -1 + A175498 *)
    Table[d[k], {k, 1, zz}] (* A175499 except that here first term is 0 *)

Formula

a(k+1) - a(k) = d(k+1) for k >= 1.
Also, A257883(n) = -1 + A175498(n) for n >= 1.

A257912 Sequence (d(n)) generated by Algorithm (in Comments) with a(1) = 2 and d(1) = 2.

Original entry on oeis.org

2, -1, 3, 1, -2, 4, 5, -6, 7, -5, 6, -4, 8, -9, 10, -8, 9, -3, 11, -13, 12, -11, 13, -7, 14, -15, 16, -14, 15, -12, 17, -19, 18, -17, 19, -10, 20, -24, 21, -20, 22, -21, 23, -22, 24, -18, 25, -29, 26, -16, 27, -32, 28, -27, 29, -23, 30, -31, 32, -30, 31, 33
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2015

Keywords

Comments

Algorithm: For k >= 1, let A(k) = {a(1), ..., a(k)} and D(k) = {d(1), ..., d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1). Let h be the least integer > -a(k) such that h is not in D(k) and a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and repeat inductively.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257883 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    a[1] = 2; d[1] = 2; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]];
    Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {i, 1, zz}];
    Table[a[k], {k, 1, zz}]  (* A257911 *)
    Table[d[k], {k, 1, zz}]  (* A257912 *)
Showing 1-2 of 2 results.