A257915 Sequence (d(n)) generated by Rule 1 (in Comments) with a(1) = 0 and d(1) = 3.
3, 1, 2, -1, 4, -2, 5, -4, 6, -3, 7, -5, 8, -6, 9, -7, 10, -8, -9, 12, 11, -10, 13, -11, 14, -13, 15, -12, 16, -14, -15, 18, 17, -16, 19, -17, 20, -19, -18, 22, 21, -20, 23, -22, 24, -21, 25, -23, 26, -25, 27, -24, 28, -26, -27, 30, -28, 29, 31, -29, 32, -31
Offset: 1
Examples
a(1) = 0, d(1) = 3; a(2) = 1, d(2) = 1; a(3) = 3, d(3) = 2; a(4) = 2, d(4) = -1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1] = 0; d[1] = 3; k = 1; z = 10000; zz = 120; A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}]; c[k_] := Complement[Range[-z, z], diff[k]]; T[k_] := -a[k] + Complement[Range[z], A[k]]; s[k_] := Intersection[Range[-a[k], -1], c[k], T[k]]; Table[If[Length[s[k]] == 0, {h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {h = Max[s[k]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}], {i, 1, zz}]; u = Table[a[k], {k, 1, zz}] (* A257877 *) Table[d[k], {k, 1, zz}] (* A257915 *)
Formula
d(k) = a(k) - a(k-1) for k >= 2, where a(k) = A257877(k).
Comments